Monopole Correction Effects on even nuclei near 132Sn region
DOI:
https://doi.org/10.22399/ijsusat.26Keywords:
Nuclear structure, OXBASH code, Three-body forces, Tin regionAbstract
Nowadays, the role of three-nucleon forces in the description of nuclear
structure properties is a main topic in the field of microscopic many-nucleon
calculations. Our work have been focused on the study of the spectroscopic properties
of the even-even isobars around 132Sn region. Based on the Schrödinger equation, the
calculations are carried out by means of OXBASH nuclear structure code in taking into
account the three-body forces interaction. After some modifications, a new interaction is
derived from kh5082 empirical interaction. The energies of the low-lying states of these
isobars have been determined. The obtained results have compared with available
experimental data.
References
[1] M.P. Kartamyshev et al., “effective interactions and
shell model studies of heavy tin isotopes”, Phys.
Rev.C76,024313(2007).
DOI:10.1103/PhysRevC.76.024313
[2] S. Sarkar and M. Saha Sarkar, “New shell closure
for
neutron-rich Sn isotopes”, Phys. Rev.
C81,064328(2010).
DOI:10.1103/PhysRevC.81.064328
[3] A. Covello et al., “Shell-model study of exotic Sn
isotopes with a realistic effective interaction”, J.
Phys. Conf. Series 267, 012019 (2011).
DOI:10.1088/1742-6596/267/1/012019.
[4] G.S. Simpson et al., “Yrast 6+ Seniority Isomers of
136,138Sn”, Phys. Rev. Lett. 113, 132502(2014).
DOI:10.1103/PhysRevLett.113.132502.
[5] W.T. Chou and E. K. Warburton, “Construction of
shell-model interactions for Z≳50, N≳82 nuclei:
Predictions for A=133–134 β- decays”, Phys. Rev.
C45,1720(1992).DOI:10.1103/PhysRevC.45.1720
[6] A. Poves and A. Zuker, “Theoretical spectroscopy
and the fp shell”, Phys. Rep. 70, No 4, 235
(1981).DOI:10.1016/0370-1573(81)90153-8
[7] O. Sorlin and M. G. Porquet, “Nuclear magic
numbers: New features far from stability”, Prog.
Part. and Nucl.Phys.61,602(2008).
DOI:10.1016/j.ppnp.2008.05.001
[8] B. A. Brown, “Oxbash for windows,” MSU-NSCL
Report, vol. 1289, (2004).
[9] J. Terasaki et al., “Anomalous behavior of 2+
excitations around 132Sn”, Phys. Rev. C 66, 054313
(2002).DOI:10.1103/PhysRevC.66.054313
[10] M. Dworschak et al; “Restoration of the N=82
Shell Gap from Direct Mass Measurements of
132,134Sn” Phys. Rev. Lett. 100,072501(2008).
DOI:10.1103/PhysRevLett.100.072501
[11] S. Sarkar and M. Saha Sarkar, “Shell model
calculations with modified empirical Hamiltonian
in the 132Sn region”, Eur. Phys. J. A 21, 61 (2004).
DOI:10.1140/epja/i2003-10198-7
[12] J. Hakala et al., “Precision Mass Measurements
beyond 132Sn: Anomalous Behavior of Odd-Even
Staggering of Binding Energies”, Phys. Rev. Lett.
109, 032501(2012). DOI:10.1103 /Phys Rev Lett.
109.032501
[13] Data extracted using the NNDC On-line Data
Service from the ENSDF database, file revised as
of August 29, (2014).
[14] A. Covello, “Shell model with realistic low
momentum two-body effective interactions”, Rom.
Journ. Phys., Vol. 58, Nos. 9-10, 1031 (2013).
[15] L. Aissaoui et al., “Pairing gap energy correction in
Shell model for the neutron-rich tin isotopes”, Braz.
Jour..of Phys, vol. 39, no. 4 (2009).
DOI:10.1590/S0103-97332009000600008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Meriem KHITER, Fatima BENRACHI, Nadjet LAOUET

This work is licensed under a Creative Commons Attribution 4.0 International License.