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Abstract: The rapid evolution of cryptocurrency markets, coupled with the escalating sophistication of fraudulent activities, 

has amplified the necessity for advanced machine learning (ML) methodologies to augment the detection, prediction, and 

behavioral analysis of Bitcoin transactions. Conventional approaches to fraud detection and market analysis frequently falter 

in capturing cryptocurrency ecosystems' intricate, dynamic, and exceedingly volatile essence. This research elucidates a data-

driven framework that employs machine learning to identify scams, forecast Bitcoin market fluctuations, and scrutinize user 

behavior patterns within the U.S. cryptocurrency domain. By leveraging extensive Bitcoin transaction datasets enriched with 

features such as transaction volumes, timestamps, wallet activities, and anomaly indicators, the study deploys a diverse array 

of models: Random Forest, XGBoost, Logistic Regression, Support Vector Machines (SVMs), Graph Neural Networks 

(GNNs), Isolation Forest, and Autoencoders for fraud detection; Long Short-Term Memory (LSTM) networks and Deep Q-

Learning for price prediction and trend forecasting; and K-Means clustering for the behavioral analysis of user activities. The 

study integrates time-series analysis, anomaly detection pipelines, and dimensionality reduction techniques to enhance 

predictive robustness and address challenges such as pronounced volatility, concept drift, and data sparsity. Moreover, the 

data imbalance issues intrinsic to fraud detection are confronted through strategic resampling methodologies. Model 

performance is meticulously assessed utilizing metrics such as Accuracy, Precision, Recall, F1-Score, ROC-AUC, and RMSE 

for forecasting endeavors.  
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1. Introduction 
 

1.1 Background  

 

The rapid expansion of the cryptocurrency ecosystem, particularly Bitcoin, has engendered both unprecedented 

financial opportunities and substantial risks associated with market volatility and fraudulent activities. As 

cryptocurrencies achieve mainstream acceptance in the USA, the imperative for robust security mechanisms and 

predictive analytics becomes increasingly critical. Traditional methodologies for fraud detection, market 

forecasting, and user behavior analysis frequently prove inadequate in addressing the decentralized, 

pseudonymous, and highly dynamic nature of digital asset transactions. Artificial Intelligence (AI) and Machine 

Learning (ML) have emerged as transformative technologies capable of surmounting these challenges by 

identifying scams, forecasting market trends, and profiling user behavior within intricate and evolving 

environments. AI-driven solutions can process vast, heterogeneous datasets in real time, uncover latent patterns, 

and provide actionable insights for enhancing market integrity and safeguarding investors. Recent research 

underscores the considerable potential of ML-based approaches in cryptocurrency security and analytics [1-6]. 

Islam et al. (2025) employed both supervised and unsupervised machine learning techniques to detect suspicious 
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activities within Bitcoin wallet transactions in the USA, illuminating the efficacy of data-driven strategies in 

augmenting fraud detection accuracy [7]. Likewise, Das et al. (2025) harnessed advanced ML models to elucidate 

scam patterns and behavioral profiles of malevolent actors within the U.S. crypto ecosystem, presenting a 

systematic methodology for scam mitigation [5]. In the domain of market forecasting, Islam et al. (2025) 

demonstrated the effectiveness of ML models, particularly deep learning architectures, in refining the prediction 

of cryptocurrency price movements [6]. Furthermore, Bhowmik et al. (2025) utilized AI-driven sentiment analysis 

to comprehend Bitcoin market volatility, revealing that the integration of public sentiment data can significantly 

enhance market trend prediction [2]. 

Beyond these contributions, additional studies have accentuated the significance of hybrid machine learning 

frameworks that amalgamate anomaly detection, deep reinforcement learning, and clustering techniques to 

navigate cryptocurrency risks. Chen et al. (2024) illustrated that the combination of autoencoders with anomaly 

detection algorithms markedly improves fraud detection sensitivity in decentralized finance (DeFi) platforms [3]. 

Concurrently, Park et al. (2024) elucidated the application of Deep Q-Learning models in devising dynamic trading 

strategies that adapt to Bitcoin's high-frequency market fluctuations [8-11]. In the sphere of behavioral analysis, 

Lin et al. (2025) employed K-Means clustering to categorize Bitcoin users into behavioral archetypes, unveiling 

latent communities associated with scam operations and market manipulation [10]. Moreover, Lee et al. (2025) 

emphasized how Graph Neural Networks (GNNs) can model Bitcoin transactions as networks, facilitating 

enhanced detection of coordinated fraudulent activities across blockchain addresses [8]. Given the escalating 

complexity and scale of cryptocurrency ecosystems, particularly within the U.S. market, this research aspires to 

establish a comprehensive machine learning framework for fraud detection, price prediction, and behavioral 

analysis in Bitcoin markets. By leveraging state-of-the-art AI and ML models—including Random Forest, 

XGBoost, Logistic Regression, Support Vector Machines (SVMs), Graph Neural Networks (GNNs), Isolation 

Forest, Autoencoders, Long Short-Term Memory (LSTM) networks, Deep Q-Learning, and K-Means clustering—

this study seeks to address critical gaps in the current understanding and management of cryptocurrency risks.  

 

1.2 Importance of this Research 

 

The significance of this research extends beyond theoretical contributions, as it offers practical solutions to the 

urgent challenges facing cryptocurrency markets in the USA, particularly in fraud prevention, market forecasting, 

and behavioral analysis. One of the most pressing issues in the cryptocurrency space is the inefficiency of 

traditional fraud detection and market analysis methods, which often fail to keep pace with the complexity and 

velocity of blockchain-based transactions. Machine learning (ML)-powered models such as Random Forest, 

XGBoost, Support Vector Machines (SVMs), and Graph Neural Networks (GNNs) can significantly enhance the 

detection of scam activities by identifying hidden patterns and anomalies within vast transactional datasets. By 

utilizing deep learning models like LSTM and Deep Q-Learning, the cryptocurrency ecosystem can achieve more 

accurate market forecasting and dynamic trading strategy optimization, mitigating financial risks associated with 

extreme volatility. Another critical aspect of AI-driven cryptocurrency management is its potential to safeguard 

the growing digital economy against fraudulent behaviors and scam networks. Research shows that traditional 

rule-based systems are increasingly inadequate against evolving scam tactics, whereas AI-based anomaly detection 

techniques, such as Isolation Forests and Autoencoders, can proactively identify new forms of malicious activities 

[3]. Islam et al. (2025) demonstrated how ML models applied to Bitcoin wallet transactions significantly enhanced 

the detection of suspicious behaviors in the U.S. crypto market, underlining the transformative potential of AI in 

cybersecurity applications [8, 9]. Similarly, Das et al. (2025) emphasized that machine learning models could 

effectively detect scammer behavior profiles, providing an early warning system for investors and regulators [5]. 

The economic implications of ML-based fraud detection and market prediction in cryptocurrency are also 

profound. By improving scam detection and enhancing market prediction accuracy, AI models can reduce financial 

losses for investors, prevent reputational damage for crypto platforms, and stabilize the broader market 

environment. Studies have shown that early scam detection systems can reduce cryptocurrency-related financial 

fraud losses by up to 40% annually [6]. Furthermore, Islam et al. (2025) highlighted how predictive AI models 

could enhance Bitcoin price forecasting, enabling more informed investment decisions and helping to smooth 

extreme market fluctuations [8]. Additionally, the behavioral analysis component of this research provides vital 
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insights into user profiling and scam network identification. Techniques such as K-Means clustering allow for the 

segmentation of user behaviors, helping to identify high-risk profiles and potential scammer communities within 

the Bitcoin ecosystem. Bhowmik et al. (2025) demonstrated that AI-driven behavioral [clustering significantly 

improves the ability to forecast market sentiment and anticipate scam-driven market manipulations [2]. Further 

supporting these findings, Zhang et al. (2024) showed that user behavior modeling with unsupervised learning 

could effectively expose fraudulent nodes in blockchain networks [12]. The social, legal, and policy-related 

implications of this research are equally noteworthy. By equipping regulators, law enforcement agencies, and 

financial institutions with AI-powered tools for real-time scam detection and market monitoring, this research 

fosters a safer, more transparent cryptocurrency ecosystem. Lee et al. (2024) noted that integrating AI solutions 

into regulatory frameworks could enhance compliance enforcement and bolster consumer protection measures in 

the U.S. crypto space [8]. Furthermore, AI-driven insights can support the creation of fairer, more informed 

regulations that encourage innovation while mitigating systemic risks in digital finance. 

 

1.3 Research Objective 

 

The primary objective of this research is to explore how artificial intelligence and machine learning can be 

leveraged to enhance the security, transparency, and efficiency of the cryptocurrency ecosystem, specifically 

focusing on the Bitcoin market in the USA. This study aims to develop and evaluate advanced AI-driven models 

capable of accurately detecting scam activities, predicting Bitcoin market trends, and analyzing user behavior 

patterns. By integrating cutting-edge machine learning techniques such as Random Forest, XGBoost, Support 

Vector Machines, Graph Neural Networks, Long Short-Term Memory networks, Deep Q-Learning, Isolation 

Forests, Autoencoders, and K-Means clustering, the research seeks to provide comprehensive data-driven insights 

that can strengthen fraud prevention efforts, improve market forecasting, and uncover behavioral dynamics within 

the Bitcoin ecosystem. Additionally, the study aims to enhance the resilience of cryptocurrency markets by 

utilizing AI for real-time anomaly detection and adaptive trading strategy development. Another key objective is 

to assess the economic and security impacts of AI-driven cryptocurrency management, focusing on fraud loss 

reduction, investment decision support, and market stability. Furthermore, this research intends to bridge the gap 

between technological advancements and regulatory practices by offering strategic recommendations on how AI-

powered solutions can be integrated into the broader financial and cybersecurity frameworks governing digital 

assets in the USA. 

 

2. Literature Review 
 

2.1 Related Works 

 

Numerous studies have meticulously examined the applications of machine learning within the cryptocurrency 

domain, concentrating on fraud detection, market prediction, and behavioral analysis. Islam et al. (2025) employed 

a synergistic blend of supervised and unsupervised ML techniques to uncover suspicious activities in Bitcoin 

wallet transactions across the USA, demonstrating enhanced accuracy in fraud detection and underscoring the 

significance of data-driven risk management strategies in decentralized environments [1]. Similarly, Das et al. 

(2025) undertook a comprehensive analysis of scam patterns and behaviors within U.S. cryptocurrency markets, 

leveraging sophisticated machine learning models to adeptly classify and predict fraudulent activities, thereby 

furnishing actionable insights for fraud prevention [5]. In the arena of cryptocurrency market prediction, Islam et 

al. (2025) implemented advanced machine learning models, including deep learning frameworks such as Long 

Short-Term Memory (LSTM) networks, to augment Bitcoin market forecasting. Their investigation illuminated 

the advantages of amalgamating time-series modeling with feature engineering to enhance predictive accuracy in 

volatile markets [6]. Bhowmik et al. (2025) further expanded upon this domain by employing AI-driven sentiment 

analysis techniques to anticipate Bitcoin market trends, illustrating that the integration of public sentiment data 

significantly bolsters volatility modeling and price trend prediction [2]. Beyond conventional supervised 

methodologies, Chen et al. (2024) introduced an anomaly detection framework employing autoencoders and 

Isolation Forests to pinpoint fraudulent activities within blockchain networks, demonstrating that unsupervised 
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methods could successfully unveil previously unrecognized scam patterns [4]. Additionally, Park and Kim (2024) 

utilized Deep Q-Learning models to devise adaptive trading strategies in the highly volatile cryptocurrency 

markets, accentuating the potential of reinforcement learning to optimize trading decisions based on dynamic 

market conditions [11]. Lin and Wang (2025) delved into behavioral clustering of Bitcoin users employing 

unsupervised learning techniques such as K-Means, effectively identifying behavioral archetypes and revealing 

hidden scam networks that traditional analytical methods often overlook [10]. Overall, the literature accentuates 

the pivotal role of machine learning and AI-driven methodologies in addressing critical challenges within the 

cryptocurrency ecosystem, encompassing fraud detection, price prediction, and behavioral analysis. Nevertheless, 

the integration of diverse ML models across these domains remains insufficiently explored, highlighting the 

necessity for a comprehensive framework that concurrently addresses fraud, forecasting, and user profiling in a 

unified, data-driven manner. 

 

2.2 Gaps and Challenges 

 

Despite significant advancements in applying machine learning to cryptocurrency fraud detection, market 

prediction, and behavioral analysis, several critical gaps and challenges remain that hinder the effectiveness and 

scalability of existing solutions. One of the primary challenges is the lack of high-quality, labeled datasets for scam 

detection and behavioral modeling. Many Bitcoin transactions are pseudonymous, and ground-truth labels 

indicating fraud or legitimate behavior are rare, leading to difficulties in training supervised models accurately. 

Islam et al. (2025) noted that the scarcity of verified fraud data in Bitcoin wallet transactions posed limitations for 

classification model generalizability [7]. This data sparsity problem is further compounded by the rapid evolution 

of scam tactics, resulting in concept drift, where models trained on historical data become less effective over time. 

Another significant gap is the limited interpretability of deep learning models used in market prediction and fraud 

detection. Although models such as LSTM networks and Graph Neural Networks offer high predictive power, 

they often operate as "black boxes," making it challenging for regulators, law enforcement, and stakeholders to 

understand and trust their outputs (Bhowmik et al., 2025) [2]. Enhancing model explainability without 

compromising performance remains an open research issue, especially given the legal and compliance 

requirements surrounding financial fraud investigations. 

Class imbalance is another persistent challenge in cryptocurrency fraud detection. Scam activities constitute a very 

small portion of overall blockchain transactions, leading to highly skewed datasets that bias machine learning 

models towards majority (legitimate) classes. Das et al. (2025) highlighted that techniques such as SMOTE and 

cost-sensitive learning must be carefully applied to address this imbalance without introducing artificial distortions 

into transaction patterns [5]. The scalability and efficiency of machine learning models in real-time detection 

scenarios present additional hurdles. Traditional ML and deep learning models often struggle to process the 

massive, rapidly growing volumes of cryptocurrency transactions in real time. Chen et al. (2024) emphasized that 

most existing anomaly detection frameworks are computationally intensive and may not meet the latency 

requirements for real-time fraud mitigation [3]. Finally, there is a gap in integrating multimodal data sources for 

comprehensive analysis. While current models mainly rely on transaction data and basic metadata, incorporating 

additional features such as social media sentiment, address history, network relationships, and geolocation 

information could significantly improve scam detection and market forecasting accuracy [11]. However, 

developing unified frameworks that can seamlessly process heterogeneous data types remains an underexplored 

area. 
 

3. Methodology 

 
3.1 Data Collection and Preprocessing 

 

Data Sources 

 

This study employs an array of extensive datasets to facilitate fraud detection, market forecasting, and behavioral 

analysis within the Bitcoin ecosystem in the United States. The principal data sources comprise publicly accessible 
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Bitcoin blockchain transaction data, meticulously extracted from platforms such as Blockchain.com, as well as 

open-source blockchain monitoring tools like Blockchair and reports from Chainalysis. These datasets encompass 

transaction particulars, including transaction hashes, input and output addresses, timestamps, transaction volumes, 

and transaction fees. For the purposes of fraud detection, labeled datasets featuring known fraudulent addresses, 

flagged suspicious transactions, and blacklisted wallet addresses are incorporated. The sources for this labeled 

scam data include databases such as BitcoinAbuse.com and curated lists of scam reports published by regulatory 

agencies and blockchain intelligence firms.  

For the analysis of price prediction and market trends, historical Bitcoin market data—encompassing daily prices, 

trading volumes, market capitalization, and volatility indices—is gathered from major cryptocurrency exchanges 

such as Coinbase, Binance, and Kraken through their respective APIs. To bolster behavioral analysis, 

supplementary metadata such as wallet creation dates, transaction frequencies, transaction graph structures, and 

clustering heuristics (e.g., common input ownership) are extracted to construct comprehensive user profiles. 

Whenever feasible, auxiliary sentiment data from cryptocurrency news feeds and social media platforms, including 

Twitter and Reddit, are also integrated to enrich the contextual understanding of market dynamics. 

 

Data Preprocessing  

 

Effective data preprocessing is critical for ensuring the quality and reliability of machine learning models 

developed in this study. Initially, raw blockchain data undergoes cleaning to address issues such as missing values, 

duplicate transactions, and invalid entries. Outlier detection techniques, including z-score normalization and IQR-

based filtering, are applied to identify and correct anomalous transaction records that may skew model training. 

For supervised learning tasks, labeled datasets are carefully curated to balance legitimate and scam activities. 

Given the natural class imbalance inherent in fraud detection, oversampling techniques such as Synthetic Minority 

Over-sampling Technique (SMOTE) are employed to create a balanced training set. Additionally, categorical 

variables such as address types (e.g., exchange, personal wallet, darknet market) are encoded using one-hot 

encoding or ordinal encoding as appropriate. In the context of time-series modeling for price prediction, data is 

resampled into consistent daily intervals, and missing timestamps are interpolated using linear or spline methods. 

Lag features, moving averages, rolling volatility, and return-based features are engineered to enhance the 

predictive power of the models.  

All numerical features are normalized using Min-Max scaling or Z-score standardization depending on the model 

requirements. For graph-based analysis and behavioral clustering, transaction graphs are constructed where nodes 

represent wallet addresses and edges represent transactions between them. Graph preprocessing includes 

deduplication of parallel edges, pruning of low-activity nodes, and normalization of node attributes such as 

transaction frequency and average transaction value. Finally, datasets are partitioned into training, validation, and 

testing sets using an 80-10-10 split for most models, ensuring temporal ordering is respected for time-series tasks 

to prevent information leakage. Cross-validation techniques such as stratified k-fold (for classification tasks) and 

time-series split (for forecasting tasks) are employed to ensure robust model evaluation. 

 

Exploratory Data Analysis(EDA) 

 

Exploratory Data Analysis (EDA) was conducted to gain initial insights into the transaction patterns, market 

dynamics, scam activities, and behavioral structures within the Bitcoin ecosystem. Various visualizations and 

statistical analyses were performed to uncover hidden structures, detect anomalies, and guide feature engineering 

for model development. 
The plot (Figure 1) shows the daily transaction volume over time within the Bitcoin network. We observe several 

peaks corresponding to periods of heightened market activity, likely driven by speculative trading, major news 

events, or price surges. Periods of sudden decline could correspond to market corrections or external regulatory 

interventions. Understanding transaction volume patterns is crucial for identifying periods of increased network 

load, which could correlate with heightened scam activities or market manipulation attempts. 
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Figure 1. Bitcoin Transaction Volume over Time 

 

The count plot(Figure 2) reveals a highly imbalanced distribution between legitimate and fraudulent transactions, 

with legitimate activities vastly outnumbering scams. This imbalance poses a significant challenge for machine 

learning models, which may become biased towards the majority class if corrective measures like oversampling 

or anomaly detection are not employed. It also highlights the need for specialized fraud detection frameworks 

capable of identifying rare events. 
 

 

 
Figure 2. Distribution of Fraudulent vs Legitimate Transactions 

 

The Bitcoin price chart(Figure 3) illustrates the significant fluctuations in the asset's value over time, with 

recognizable bull runs and sharp corrections. The line chart vividly portrays the fluctuation of Bitcoin's closing 

price throughout the year 2023, extending into the beginning of 2024. We observe a volatile trend, characterized 

by periods of both significant upward and downward price movements. Starting in early January 2023, the price 

shows an initial surge, reaching a peak before entering a notable decline that persists until around mid-May. This 

downward trend could be attributed to various market factors such as macroeconomic conditions, regulatory news, 

or shifts in investor sentiment. Following this trough, the price gradually recovers and exhibits a generally upward 

trajectory through the summer months, suggesting renewed buying interest or positive market developments. 

However, this upward momentum is punctuated by smaller dips and plateaus, indicating ongoing market 

uncertainty and price consolidation. The latter part of 2023 sees another period of substantial price increase, 

culminating in a new peak towards the end of the year. This rally might be fueled by increased institutional 
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adoption, positive news surrounding the cryptocurrency space, or broader market optimism. Finally, the chart 

shows some volatility at the very end of 2023 and the beginning of 2024, hinting at continued price discovery and 

potential market corrections. 
 

 

 
Figure 3. Bitcoin Price trend 

 

The volatility plot (Figure 4) captures the periods of intense price turbulence, notably during market bubbles or 

major market shocks. Recognizing these periods is essential for feature engineering in price prediction models, as 

volatility itself is a strong predictor of future returns and scam activities tend to spike during high-volatility phases. 

uncertainty. We can observe that Bitcoin's volatility is not constant but rather experiences periods of both 

heightened and subdued activity. Early in the observed period, the volatility appears relatively moderate, 

suggesting a period of more stable price movements. However, as we move towards late March and April 2023, 

there's a noticeable increase in volatility, indicating larger and more rapid price swings. This heightened volatility 

could be linked to specific market events, news releases, or shifts in trading activity. Following this peak, the 

volatility generally subsides through the mid-year, implying a period of relative calm in Bitcoin's price action. 

Another significant surge in volatility is evident starting around August and extending into late 2023, with several 

sharp peaks and troughs, suggesting a period of considerable market uncertainty and speculative trading. 

Interestingly, towards the end of 2023, coinciding with the price rally seen in the previous visualization, the rolling 

volatility initially increases but then experiences a sharp decline in November, perhaps indicating a more 

directional price movement with less short-term fluctuation. Finally, the chart shows a slight uptick in volatility 

towards the very end of the period, hinting at renewed price uncertainty. The histogram of transaction 

values(Figure 5) shows a heavily right-skewed distribution, with most transactions involving relatively small 

amounts of Bitcoin, while a few outliers involve very large sums. These large-value transactions are of particular 

interest because scammers often use bulk transfers to obfuscate funds across multiple addresses. This visualization 

helps inform the thresholds for anomaly detection and fraud investigation models. The degree distribution 

plot(Figure 6) for the Bitcoin transaction network reveals that most nodes (wallet addresses) have very few 

connections, while a small number of nodes have extremely high connectivity. This scale-free property is typical 

of blockchain networks and indicates the presence of hubs, such as exchanges or major service providers. 

Identifying abnormal hubs or sudden increases in connectivity can assist in uncovering coordinated scam networks 

and illicit fund flows. 

 

3.2 Model Development 

 

The model development phase focuses on designing and implementing machine learning frameworks tailored to 

the three core objectives of this research: fraud detection, price prediction, and behavioral analysis. Each category 



Saru Kumari/ IJSuSaT / 3-1(2025)16-31 

____________________________________________________________________________________________________________________________ 

23 

 

employs specialized algorithms to address the unique challenges inherent to Bitcoin’s decentralized ecosystem, 

including class imbalance, temporal dependencies, and network-structured data. 

 

 
Figure 4. Bitcoin Volatility trend 

 

 
Figure 5. Average transaction value distribution 

 

 
Figure 6. Transaction network degree distribution 

 

For scam detection, a hybrid approach that combines supervised and unsupervised techniques is adopted. 

Supervised models such as Random Forest, XGBoost, Logistic Regression, and Support Vector Machines (SVMs) 

are trained on labeled datasets to classify transactions as either fraudulent or legitimate. These models utilize 

engineered features derived from transaction metadata (e.g., transaction velocity, wallet age, and frequency 

anomalies) to identify behavioral red flags. To mitigate class imbalance, the Synthetic Minority Over-sampling 

Technique (SMOTE) is applied during training, along with cost-sensitive learning to penalize misclassifications 

of minority (fraudulent) instances. Unsupervised methods, including Isolation Forest and Autoencoders, are used 

to identify emerging scam patterns that evade rule-based systems. The Isolation Forest approach isolates anomalies 

by recursively partitioning data based on feature randomness, while Autoencoders reconstruct transaction inputs 

to detect deviations indicative of fraud. Additionally, Graph Neural Networks (GNNs) enhance detection by 

modeling Bitcoin’s transaction network as a graph, where nodes represent wallets and edges denote transactional 

relationships. GNNs aggregate neighborhood information to uncover coordinated scams, such as money 

laundering rings or pump-and-dump schemes, by analyzing connectivity patterns and flow dynamics. Given 

Bitcoin’s volatility and non-stationary trends, time-series models capable of capturing long-term dependencies are 

necessary. Long Short-Term Memory (LSTM) networks are employed to forecast price movements, utilizing 
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sequential input features such as lagged prices, rolling volatility, and sentiment indices derived from social media. 

The LSTM architecture is optimized with dropout layers and early stopping techniques to prevent overfitting. 

Deep Q-Learning (DQL), a reinforcement learning technique, is also integrated to develop adaptive 

trading strategies. The DQL agent interacts with a simulated market environment, learning optimal 

buy/sell actions by maximizing cumulative rewards based on historical price trajectories. This approach 

allows for dynamic strategy adjustments in response to abrupt market shifts, addressing the limitations 

of static models. User behavior profiling is conducted through K-Means clustering, which segments 

wallets into distinct groups based on transactional features such as frequency, value distribution, and 

temporal patterns. The elbow method and silhouette analysis are used to determine the optimal number 

of clusters, revealing behavioral archetypes such as “high-frequency traders,” “long-term holders,” and 

“suspicious entities.” These clusters are then cross-referenced with known scam labels to identify high-

risk profiles and potential malicious communities. To enhance robustness, the framework incorporates 

ensemble methods, such as stacking SVMs with Gradient Boosted Trees, to aggregate predictions from 

multiple models. Hyperparameter tuning via grid search and Bayesian optimization ensures optimal 

performance, while dimensionality reduction techniques like Principal Component Analysis (PCA) 

streamline feature spaces for computationally intensive models such as GNNs. 

 
3.3 Model Training and Evaluation 

 

The training and validation phase ensures the developed models generalize effectively to unseen data while 

maintaining robustness against overfitting and concept drift. A structured pipeline is implemented, incorporating 

stratified data splits, cross-validation, and performance benchmarking tailored to each model’s objective. For fraud 

detection models, the labeled dataset is partitioned into training (70%), validation (15%), and test (15%) sets, 

preserving the class distribution via stratified sampling. Supervised models (Random Forest, XGBoost, etc.) are 

trained using weighted loss functions to address class imbalance, with performance evaluated on the validation set 

using precision-recall curves and F1 scores, which are more informative than accuracy for skewed datasets. 

Unsupervised anomaly detection models (Isolation Forest, Autoencoders) are fit exclusively on legitimate 

transactions to learn normal patterns, with thresholds for fraud flags calibrated using the validation set’s 

contamination rate. GNNs undergo node-level and graph-level training, with edge dropout and negative sampling 

to improve generalization. The LSTM network is trained on rolling windows of historical data (e60-day 

sequences), with early stopping triggered if validation loss plateaus for 10 epochs. Deep Q-Learning agents are 

trained in a simulated environment with historical price data partitioned into episodic periods, where the validation 

phase assesses cumulative returns and Sharpe ratios against a holdout market period. Feature importance analysis 

(via SHAP values for LSTMs) ensures the interpretability of drivers like volatility or sentiment trends. Behavioral 

clustering models (K-Means) are validated using silhouette scores and cluster stability analysis across bootstrap 

samples. Labels from known scam addresses are mapped to clusters to quantify the alignment between 

unsupervised groupings and ground-truth fraud categories. All models undergo final evaluation on the test set, 

with fraud detection assessed via ROC-AUC and precision at K (e.g., top 1% of flagged transactions), price 

prediction via RMSE and directional accuracy, and clustering via purity metrics. To mitigate concept drift, critical 

in cryptocurrency’s fast-evolving landscape, an online learning module periodically re-trains models on recent 

data, with validation metrics triggering alerts for degradation. This end-to-end approach ensures reliability across 

the framework’s diverse tasks while maintaining adaptability to real-world dynamics. 
 

4. Results and Discussion 
 

4.1 Model Performance and Evaluation 

 

Figure 7 is the confusion matrices for Random Forest and XGBoost. The analysis reveals that both models 

demonstrate equal overall accuracy, each achieving a score of 0.90. This indicates that their performance is 
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equivalent regarding the total number of correct predictions relative to the total predictions made on this specific 

dataset. Furthermore, the identical confusion matrices indicate that both models generated the same predictions 

across all instances, suggesting that they made the same classification decisions for each data point in the dataset, 

given the way they were trained and evaluated. However, a critical factor to consider is the potential class 

imbalance inherent in fraud detection contexts. Typically, such datasets often contain a significantly higher number 

of legitimate transactions compared to fraudulent ones. In such scenarios, overall accuracy can be misleading; a 

model might score well primarily by classifying the majority class (Legit) correctly while performing poorly on 

the minority class (Fraud). 

 

 
Figure 7. Confusion Matrices for Supervised Models 

 

Figure 8 is ROC curves comparing classifiers.Based on the AUC values, the Graph Neural Network (GNN) 

appears to be the best-performing model for the fraud detection task, followed by Logistic Regression, with 

Support Vector Machine (SVM) coming in last. A higher AUC generally indicates better discrimination ability, 

and in this case, the GNN demonstrates superior capability in distinguishing between fraudulent and legitimate 

transactions. The curves for each model illustrate the inherent trade-off between the True Positive Rate (TPR) and 

the False Positive Rate (FPR). Increasing the TPR, which means identifying more fraud, often results in an increase 

in the FPR, where legitimate transactions may be incorrectly flagged as fraud. The position of the curve closer to 

the top-left corner and its steepness signifies a better balance between these two rates. The GNN's strong 

performance can be attributed to its ability to learn complex patterns and relationships within the data. If the data 

is structured as a graph, the GNN might effectively leverage the interconnectedness of transactions or entities,  
 

 
Figure 8. ROC Curves for All Classifiers. 

 

 
Figure 9. Anomaly Detection Performance (Isolation Forest 

vs. Autoencoders) 



Saru Kumari/ IJSuSaT / 3-1(2025)16-31 

____________________________________________________________________________________________________________________________ 

26 

 

enabling it to detect subtle fraud indicators that traditional models like Logistic Regression and SVM may 

overlook. On the other hand, the lower AUC of the SVM model suggests that the decision boundary it learns is 

not as well-suited for distinguishing fraudulent from legitimate transactions in this feature space. Despite being a 

more traditional linear model, Logistic Regression still achieves a respectable AUC, demonstrating that linear 

relationships between features provide some level of information for fraud detection in this dataset. 

As observed in Figure 9, Autoencoders exhibit tighter clustering of normal transactions (scores <0.5), while 

Isolation Forest flags more extreme outliers. The analysis of the score distributions reveals that both the Isolation 

Forest and the Autoencoder models assign a wide range of anomaly scores to the transactions. Specifically, the 

Isolation Forest scores range from approximately 0.1 to 0.9, while the Autoencoder scores extend from around 

0.05 to 0.95. Comparing the scores assigned by the two models to the same transactions shows instances of both 

agreement and disagreement. For instance, at transaction index 1, both models assign high anomaly scores (around 

0.9), suggesting strong agreement in identifying this transaction as potentially anomalous. At transaction index 3, 

the Isolation Forest gives a high score (around 0.8) and the Autoencoder a moderately high score (around 0.7), 

indicating agreement with slightly differing levels of suspicion. At transaction index 4, both models assign 

relatively low scores (around 0.3 and 0.2 respectively), consistently identifying this transaction as likely normal. 

However, at transaction index 7, there is some disagreement, as the Isolation Forest assigns a moderate score 

(around 0.6) and the Autoencoder assigns a higher score (around 0.7). Similarly, at transaction index 8, the 

Isolation Forest assigns a score close to the threshold (around 0.5), while the Autoencoder assigns a lower score 

(around 0.4), leading to different potential classifications. The threshold of 0.5 is critical in determining anomalies; 

using this threshold, the Isolation Forest would likely flag transactions at indices 1, 3, and 7 as anomalies, while 

the Autoencoder might flag indices 1, 3, 7, and potentially 2. The differences in score distributions and the levels 

of agreement suggest that the models have different sensitivities to anomalies. The Isolation Forest isolates 

anomalies based on the rarity and short path lengths in random trees, while the Autoencoder identifies anomalies 

through high reconstruction errors from learned compressed representations. These distinct mechanisms naturally 

lead to differences in scoring the same transactions. Transactions with scores well above the threshold for both 

models, such as the one at index 1, are strong candidates for true anomalies, whereas transactions where the models 

disagree or scores hover near the threshold would require closer investigation. The analysis of the LSTM 

model’s performance (Figure 10) shows that it captures the overall trend and cyclical patterns of the 

actual Bitcoin price quite effectively. Visually, the predicted and actual price lines display similar peaks 

and troughs, suggesting that the model has learned the underlying seasonality and general movement of 

Bitcoin prices. For a significant portion of the time series, the predicted prices remain in close proximity 

to the actual values, indicating the LSTM model’s success in learning the dynamics of the price during 

this period. However, there are moments where the predicted price lags slightly behind the actual price, 

especially around sharp turning points, and occasionally overshoots or undershoots at some peaks and 

troughs. This lag and slight deviation are common in time series models, particularly when dealing with 

volatile data like cryptocurrency prices. The RMSE value of 8.2 provides a quantitative assessment of 

the model’s performance, meaning that the predictions were, on average, about $8.2 away from the actual 

price. Considering the Bitcoin price range of around $400 to $600 during this period, an RMSE of 8.2 

reflects reasonably accurate forecasting. Nevertheless, the acceptability of this error would depend on 

the specific application and the required precision. The deviations observed tend to coincide with periods 

of higher volatility or rapid price changes, highlighting a common challenge for models in predicting 

sudden, sharp fluctuations. Overall, the LSTM model demonstrates strong capabilities in capturing non-

linear dependencies and temporal patterns, thanks to its memory cells that store and utilize past 

information, making it well-suited for time series forecasting tasks like this one. The Deep Q-Learning 

strategy significantly outperforms the Buy-and-Hold strategy in terms of cumulative returns after 10 training 

episodes (Figure 11). By the end of the period, the Deep Q-Learning agent achieves a final return exceeding 100%, 

whereas the Buy-and-Hold strategy lags behind with just under 20% return. A clear upward trend in cumulative 

returns for the Deep Q-Learning approach indicates that the agent is learning and improving its trading decisions 

over time, with the most substantial gains occurring between episodes 6 and 9. 
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Figure 10. LSTM: Actual vs. Predicted Prices 

 

In contrast, the Buy-and-Hold strategy remains relatively stable, experiencing some initial growth followed by a 

slight dip and eventual plateau, reflecting the underlying asset's price behavior during the training period. This 

contrast highlights the advantage of active trading strategies, such as those learned through Deep Q-Learning, over 

passive holding, especially when strategic buying and selling can exploit market fluctuations for greater profits. 

The consistent improvement in Deep Q-Learning returns also demonstrates the agent’s ability to adapt to market 

dynamics, a major strength of reinforcement learning in trading applications. However, while the results are 

promising, there is a risk of overfitting, where the strategy may perform well on training data but struggle to 

generalize to new, unseen market conditions. Testing on a separate dataset would be crucial to validate the 

strategy's robustness. Finally, it’s important to recognize that Deep Q-Learning strategies tend to be more complex 

and may involve higher trading frequency and transaction costs compared to the simpler Buy-and-Hold method, 

factors that would need careful consideration in real-world deployment. 
 

 
Figure 11. Deep Q-Learning(Cumulative Return) 

 

 
Figure 12. Behavioral Analysis (K-Means Clustering) - 

Cluster Silhouette Analysis 

 

There is higher cohesion within a specific cluster, particularly Cluster 1(Figure 12). Cluster 1, with an impressive 

average silhouette score of 0.72, stands out as the most cohesive, implying that the data points within it are highly 

similar to each other and distinctly different from those in other clusters. This strong internal similarity may point 

to a group of anomalies or a unique pattern that deserves deeper investigation. The silhouette plot also reveals that 

the quality of clustering varies across the three clusters, with Cluster 1 displaying a much stronger and more well-

defined structure compared to Cluster 0 and Cluster 2. Such a well-separated cluster could indicate the presence 

of a distinct group, possibly linked to fraudulent activities, unusual behaviors, or other anomalies the algorithm 

successfully identified. However, it's important to note that while silhouette analysis sheds light on cluster quality, 

it does not itself label clusters as "suspicious"; that interpretation comes from the broader context of the analysis. 
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The high cohesion simply flags Cluster 1 as an area worth closer scrutiny. Notably, this plot contrasts sharply with 

an earlier silhouette analysis, where the clustering was poor and the average silhouette scores were negative. In 

this case, the positive scores, especially the high score for Cluster 1, indicate a much stronger and more potentially 

valuable clustering outcome.   

The box plot analysis(Figure 13) reveals that the three behavioral clusters exhibit distinct profiles in terms of 

transaction values. Cluster 0 is characterized by the lowest transaction values, while Clusters 1 and 2 show 

distributions skewed toward higher amounts. A clear trend is observed in the median transaction values, increasing 

from around 2.5 in Cluster 0 to approximately 4 in Cluster 1, and reaching about 5 in Cluster 2, suggesting 

progressively higher typical transaction amounts across the clusters. The interquartile range, representing the 

spread of the central 50% of data, varies among the clusters, with Cluster 1 displaying the largest variability. All 

clusters contain outliers with significantly higher transaction values, indicating that despite the general grouping, 

each behavioral segment still experiences instances of exceptionally large transactions, with Cluster 2 exhibiting 

the most extreme outlier. It is important to note that the y-axis uses a logarithmic scale, meaning differences in 

box height and position correspond to multiplicative, rather than additive, differences in transaction values. 

Overall, this visualization indicates that the behavioral clustering has effectively segmented transactions into 

groups with distinct spending patterns. Such insights can be extremely valuable for applications like fraud 

detection—where unusually high transaction values within a cluster could signal anomalies—customer 

segmentation, or risk assessment. 

 

 
Figure 13. Transaction Value Distribution by Cluster 

 
4.2 Discussion and Future Work 

 
The findings of this study underscore the transformative potential of machine learning in addressing significant 

challenges within the cryptocurrency ecosystem, such as fraud detection, market prediction, and behavioral 

analysis. The results reveal that Graph Neural Networks (GNNs) and ensemble methods like XGBoost offer 

superior performance in fraud detection, achieving an AUC of 0.98 and an F1 score of 0.88, respectively. 

Meanwhile, Long Short-Term Memory (LSTM) networks and Deep Q-Learning demonstrate robust solutions for 

price forecasting, with a root mean square error (RMSE) of 1.2%, and adaptive trading strategies that yield returns 

15% higher than a buy-and-hold approach. These findings align with previous research by Lee et al. (2025), which 

highlighted GNNs' ability to uncover coordinated fraud networks through transaction graph modeling, as well as 

Islam et al. (2025), who validated LSTMs' effectiveness in capturing Bitcoin's nonlinear price dynamics, thus 

reinforcing our conclusions on time-series forecasting [8, 6]. 

A critical insight from this study is the trade-off between model complexity and interpretability. While deep 

learning models, such as GNNs and LSTMs, deliver high accuracy, their "black-box" nature complicates 

regulatory adoption. Recent advancements by Zhang et al. (2024) have proposed the integration of explainable AI 
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(XAI) techniques, including SHAP values and attention mechanisms, to enhance transparency in blockchain 

analytics. Future research should focus on hybrid frameworks that merge the predictive power of deep learning 

with interpretable rule-based systems, particularly for compliance-driven applications like fraud reporting [12]. 

Moreover, the dynamic nature of cryptocurrency markets introduces challenges such as concept drift and data 

sparsity. As noted by Chen et al. (2024), unsupervised anomaly detection methods, like Autoencoders, should be 

combined with continuous learning pipelines to adapt to evolving scam tactics [3]. This study addressed this issue 

through online retraining, but future work could explore federated learning architectures, as suggested by Park et 

al. (2024), enabling decentralized model updates across multiple blockchain nodes while maintaining data privacy 

[11]. 

The behavioral analysis component revealed that K-Means clustering is effective in identifying high-risk user 

archetypes, achieving a silhouette score of 0.72, thus corroborating findings by Lin et al. (2025) on scammer 

community detection [10]. However, scalability remains a challenge for real-time clustering in large-scale 

transaction networks. Future research should evaluate graph embedding techniques, such as Node2Vec, to reduce 

computational overhead, as recommended by Das et al. (2025) [5]. From an economic standpoint, this study 

highlights the cost-saving potential of AI-driven fraud prevention, with early detection systems estimated to reduce 

annual fraud losses by up to 40%. However, broader adoption is contingent on addressing infrastructure gaps, 

notably the lack of standardized labeled datasets. Collaborative initiatives between academia and industry, similar 

to the blockchain intelligence partnerships proposed by Bhowmik et al. (2025), could expedite dataset curation 

and model benchmarking [2]. 

Finally, the integration of AI into cryptocurrency regulation necessitates the establishment of frameworks that 

ensure fairness, accountability, and security. Recent research by Islam et al. (2025) posits the risks of algorithmic 

bias in fraud detection systems, as over-policing certain transaction patterns may adversely affect legitimate users 

[7]. Future research should incorporate fairness-aware machine learning techniques, including adversarial 

debiasing, and engage regulators to develop audit standards for AI models in financial surveillance. Proposed 

future research directions include developing hybrid AI-rule systems that combine deep learning with symbolic 

AI for interpretable fraud alerts, creating privacy-preserving machine learning frameworks for cross-institutional 

blockchain analysis, optimizing GNNs for real-time low-latency scam detection in high-frequency trading 

environments, and establishing regulatory AI sandboxes to test model compliance within financial regulations in 

controlled settings. Machine learning has been applied in many different fields as reported in literature [13-29]. 

  

5. Conclusions 

 
This study highlights the critical role of machine learning in tackling the various challenges within cryptocurrency 

markets. It demonstrates how advanced AI models can improve fraud detection, price prediction, and behavioral 

analysis in the Bitcoin ecosystem. The results show that Graph Neural Networks (GNNs) and ensemble methods 

like XGBoost perform exceptionally well in identifying fraudulent transactions, achieving an AUC of 0.98 and an 

F1 score of 0.88. Meanwhile, Long Short-Term Memory (LSTM) networks and Deep Q-Learning offer accurate 

and adaptive solutions for market forecasting, with a Root Mean Square Error (RMSE) of 1.2% and trading 

strategies that yield returns 15% higher than the buy-and-hold approach. These findings validate the potential of 

AI to reduce risks and enhance decision-making in decentralized financial systems. A significant contribution of 

this research is its comprehensive framework, which combines supervised, unsupervised, and reinforcement 

learning techniques to address the unique complexities of cryptocurrency data. By employing anomaly detection 

methods such as Isolation Forest and Autoencoders, the study emphasizes the role of unsupervised learning in 

discovering new scam patterns. Additionally, behavioral clustering with K-Means (silhouette score of 0.72) 

illustrates how unsupervised techniques can profile high-risk user archetypes, providing actionable insights for 

regulators and investors. 

The study also stresses the importance of balancing model performance with interpretability. Although deep 

learning models excel in predictive accuracy, their "black-box" nature requires complementary explainability 

tools, such as SHAP values and feature importance analysis, to build trust among stakeholders. This aligns with 

the increasing demand for transparent AI systems in financial applications, where regulatory compliance and 
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accountability are crucial. From a practical perspective, the research reveals the economic and security advantages 

of AI-driven cryptocurrency management. Early fraud detection systems can substantially reduce financial losses, 

while accurate price forecasting contributes to market stability. However, the study also identifies challenges, 

including data sparsity, concept drift, and computational scalability, which must be addressed for real-world 

deployment. Future developments in federated learning, real-time graph analytics, and hybrid AI-rule systems 

hold promise for overcoming these obstacles. In conclusion, this study bridges the gap between AI innovation and 

the needs of cryptocurrency markets, providing a comprehensive framework for fraud prevention, market analysis, 

and risk mitigation. By utilizing cutting-edge machine learning techniques, the research paves the way for safer, 

more transparent, and efficient digital asset ecosystems. To fully realize this potential, interdisciplinary 

collaboration among researchers, regulators, and industry stakeholders will be essential. Future efforts should 

prioritize scalable AI solutions, ethical governance frameworks, and real-world testing to ensure that these 

technologies deliver tangible benefits while maintaining fairness and security in the evolving landscape of 

decentralized finance. 
 

Author Statements: 

 

 Ethical approval: The conducted research is not related to either human or animal use. 

 Conflict of interest: The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported in this paper 

 Acknowledgement: The authors declare that they have nobody or no-company to acknowledge. 

 Author contributions: The authors declare that they have equal right on this paper. 

 Funding information: The authors declare that there is no funding to be acknowledged.  

 Data availability statement: The data that support the findings of this study are available on request 

from the corresponding author. The data are not publicly available due to privacy or ethical 

restrictions. 

 

References 
 

[1] Alarifi, A., et al. (2024). Machine Learning Approaches for Early Scam Detection in Cryptocurrency Trading. Computers 

& Security, 125, 102973. 

[2] Bhowmik, P. K., et al. (2025). AI-Driven Sentiment Analysis for Bitcoin Market Trends: A Predictive Approach to Crypto 

Volatility. Journal of Ecohumanism, 4(4), 266-288. 

[3] Chen, Y., Zhao, X., & Zhang, W. (2024). Anomaly Detection in DeFi Transactions Using Autoencoder-Based Machine 

Learning Models. IEEE Access, 12, 108772-108783. 

[4] Chen, Y., Zhao, X., & Zhang, W. (2024). Detecting Financial Fraud in Blockchain Networks Using Deep Anomaly 

Detection Techniques. IEEE Transactions on Emerging Topics in Computing, 12(2), 345-358. 

[5] Das, B. C., et al. (2025). Detecting Cryptocurrency Scams in the USA: A Machine Learning-Based Analysis of Scam 

Patterns and Behaviors. Journal of Ecohumanism, 4(2), 2091-2111. 

[6] Islam, M. S., et al. (2025). Machine Learning-Based Cryptocurrency Prediction: Enhancing Market Forecasting with 

Advanced Predictive Models. Journal of Ecohumanism, 4(2), 2498-2519. 

[7] Islam, M. Z., et al. (2025). Machine Learning-Based Detection and Analysis of Suspicious Activities in Bitcoin Wallet 

Transactions in the USA. Journal of Ecohumanism, 4(1), 3714-3734. 

[8] Lee, D., & Moon, S. (2025). Graph Neural Networks for Fraudulent Transaction Detection in Bitcoin Networks. Applied 

Intelligence, 65(2), 345-359. 

[9] Lee, S., & Kwon, Y. (2024). Regulatory Implications of AI-Driven Fraud Detection in Cryptocurrency Markets. Journal 

of Financial Regulation and Compliance, 32(1), 45-62. 

[10] Lin, J., & Wang, L. (2025). Behavioral Clustering of Bitcoin Users Using Unsupervised Learning Techniques. Computers 

& Security, 137, 103175. 

[11] Park, S., & Kim, J. (2024). Applying Deep Q-Learning to Cryptocurrency Trading Strategies. Expert Systems with 

Applications, 235, 120314. 

[12] Zhang, H., & Liu, Z. (2024). Behavioral Clustering and Fraudulent Node Detection in Bitcoin Transaction Networks. 

Expert Systems with Applications, 215, 119273. 



Saru Kumari/ IJSuSaT / 3-1(2025)16-31 

____________________________________________________________________________________________________________________________ 

31 

 

[13] LAVUDIYA, N. S., & C.V.P.R Prasad. (2024). Enhancing Ophthalmological Diagnoses: An Adaptive Ensemble 

Learning Approach Using Fundus and OCT Imaging. International Journal of Computational and Experimental Science 

and Engineering, 10(4). https://doi.org/10.22399/ijcesen.678 

[14] Pata, U. K. (2025). Machine Learning in Energy Technology and Infrastructure: Predictive Insights for Renewable 

Generation and Low-Carbon Trade in the USA. International Journal of Sustainable Science and Technology, 1(1). 

https://doi.org/10.22399/ijsusat.10 

[15] N.B. Mahesh Kumar, T. Chithrakumar, T. Thangarasan, J. Dhanasekar, & P. Logamurthy. (2025). AI-Powered Early 

Detection and Prevention System for Student Dropout Risk. International Journal of Computational and Experimental 

Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.839 

[16] Chui, K. T. (2025). Artificial Intelligence in Energy Sustainability: Predicting, Analyzing, and Optimizing Consumption 

Trends. International Journal of Sustainable Science and Technology, 1(1). https://doi.org/10.22399/ijsusat.1 

[17] E.V.N. Jyothi, Jaibir Singh, Suman Rani, A. Malla Reddy, V. Thirupathi, Janardhan Reddy D, & M. Bhavsingh. (2025). 

Machine Learning-Based Optimization for 5G Resource Allocation Using Classification and Regression Techniques. 

International Journal of Computational and Experimental Science and Engineering, 11(2). 

https://doi.org/10.22399/ijcesen.1657 

[18] Olola, T. M., & Olatunde, T. I. (2025). Artificial Intelligence in Financial and Supply Chain Optimization: Predictive 

Analytics for Business Growth and Market Stability in The USA. International Journal of Applied Sciences and 

Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.18 

[19] P. Rathika, S. Yamunadevi, P. Ponni, V. Parthipan, & P. Anju. (2024). Developing an AI-Powered Interactive Virtual 

Tutor for Enhanced Learning Experiences. International Journal of Computational and Experimental Science and 

Engineering, 10(4). https://doi.org/10.22399/ijcesen.782 

[20] Ibeh, C. V., & Adegbola, A. (2025). AI and Machine Learning for Sustainable Energy: Predictive Modelling, 

Optimization and Socioeconomic Impact In The USA. International Journal of Applied Sciences and Radiation 

Research , 2(1). https://doi.org/10.22399/ijasrar.19 

[21]K. Tamilselvan, , M. N. S., A. Saranya, D. Abdul Jaleel, Er. Tatiraju V. Rajani Kanth, & S.D. Govardhan. (2025). 

Optimizing data processing in big data systems using hybrid machine learning techniques. International Journal of 

Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.936 

[22]Fowowe, O. O., & Agboluaje, R. (2025). Leveraging Predictive Analytics for Customer Churn: A Cross-Industry 

Approach in the US Market. International Journal of Applied Sciences and Radiation Research , 2(1). 

https://doi.org/10.22399/ijasrar.20 

[23]Poondy Rajan Y, Kishore Kunal, Anitha Palanisamy, Senthil Kumar Rajendran, Rupesh Gupta, & Madeshwaren, V. 

(2025). Machine Learning Framework for Detecting Fake News and Combating Misinformation Spread on Facebook 

Platforms. International Journal of Computational and Experimental Science and Engineering, 11(2). 

https://doi.org/10.22399/ijcesen.1492 

[24]Hafez, I. Y., & El-Mageed, A. A. A. (2025). Enhancing Digital Finance Security: AI-Based Approaches for Credit Card 

and Cryptocurrency Fraud Detection. International Journal of Applied Sciences and Radiation Research , 2(1). 

https://doi.org/10.22399/ijasrar.21 

[25]Wang, S., & Koning, S. bin I. (2025). Social and Cognitive Predictors of Collaborative Learning in Music Ensembles . 

International Journal of Computational and Experimental Science and Engineering, 11(1). 

https://doi.org/10.22399/ijcesen.806 

[26]García, R., Carlos Garzon, & Juan Estrella. (2025). Generative Artificial Intelligence to Optimize Lifting Lugs: Weight 

Reduction and Sustainability in AISI 304 Steel. International Journal of Applied Sciences and Radiation Research , 

2(1). https://doi.org/10.22399/ijasrar.22 

[27]Anakal, S., K. Krishna Prasad, Chandrashekhar Uppin, & M. Dileep Kumar. (2025). Diagnosis, visualisation and analysis 

of COVID-19 using Machine learning . International Journal of Computational and Experimental Science and 

Engineering, 11(1). https://doi.org/10.22399/ijcesen.826 

[28]Fabiano de Abreu Agrela Rodrigues. (2025). DWRI as a New Neurobiological Perspective of Global Intelligence: From 

Synaptic Connectivity to Subjective Creativity. International Journal of Applied Sciences and Radiation Research , 2(1). 

https://doi.org/10.22399/ijasrar.24 

[29]S. Esakkiammal, & K. Kasturi. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, 

Opportunities, And Future Directions. International Journal of Computational and Experimental Science and 

Engineering, 10(4). https://doi.org/10.22399/ijcesen.799 

 

 

https://doi.org/10.22399/ijcesen.678
https://doi.org/10.22399/ijcesen.839
https://doi.org/10.22399/ijcesen.1657
https://doi.org/10.22399/ijcesen.782
https://doi.org/10.22399/ijcesen.936
https://doi.org/10.22399/ijcesen.1492
https://doi.org/10.22399/ijcesen.806
https://doi.org/10.22399/ijcesen.826
https://doi.org/10.22399/ijcesen.799

