
Examination of the radiation absorption parameters of CuO coatings prepared at different ratios

Betul Cetin^{1,2*}, Arzu Poyraz³, Melek Gul⁴

^{1*}Amasya University Faculty of Engineering, Mechanical Engineering Department, 05100, Amasya-Turkey

²Süleyman Demirel University Faculty of Engineering and Natural Sciences, Physics Department, 32100, Isparta-Turkey

* Corresponding Author Email: betulcetin3205@gmail.com - ORCID: 0000-0001-9129-2421

³Toros University Vocational School of Health Services, 33140, Mersin-Turkey

Email: arzu.coskun@toros.edu.tr - ORCID:0000-0003-4771-1558

⁴ Amasya University Faculty of Art and Sciences, Chemistry Department, 05100, Amasya-Turkey

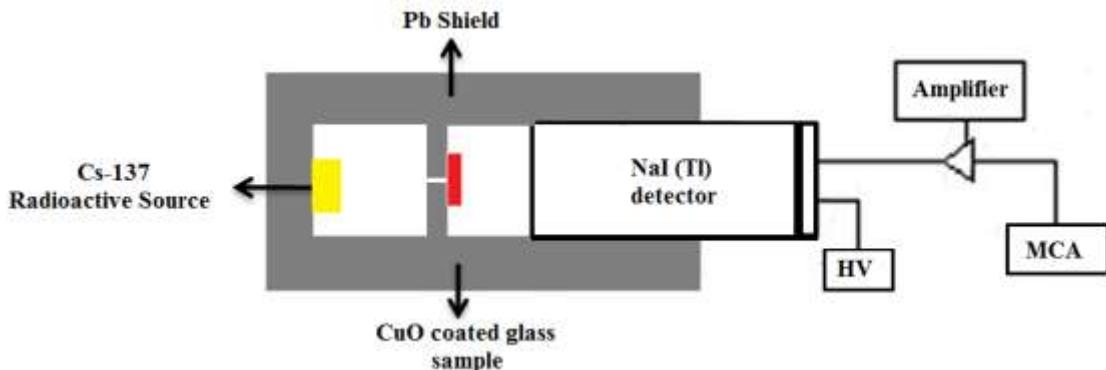
Email: melek.gul@amasya.edu.tr - ORCID: 0000-0002-0037-1202

Abstract: This article contains the results of an experimental study to investigate the radiation absorption properties of different ratios of CuO-coated glasses. A gamma spectrometer connected with an NaI(Tl) detector has been used to assess the radiation shielding abilities of glass materials coated with CuO. The shielding characteristics of a CuO-doped glass samples with PMMA at a gamma energy of 662 keV were examined in this scope. The mean free path (mfp), half value layer (HVL) and tenth value layer (TVL) parameters have been determined using the results. As a result of this study, when glass materials coated with PMMA and CuO at different ratios were compared, it was concluded that increasing the amount of CuO in PMMA decreased the absorption coefficient.

Keywords: CuO, radiation absorption parameters, gamma spectrometer

Received: 11 September 2025 / **Revised:** 01 January 2026 / **Accepted:** 05 January 2026 / **DOI:** 10.22399/ijssat.35

1. Introduction

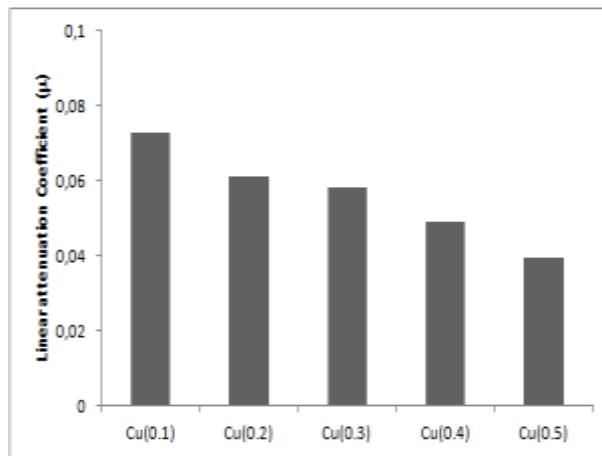

With the advancement of technology and the increasing use of radiation-based devices in almost every field, radiation protection has become even more important. Shielding, one of the most important methods of radiation protection, is the reduction of radiation intensity to minimum levels by placing a shielding material between the radioactive source and the living to protect against radiation or minimize exposure. When shielding is applied, the radiation emitted from the source interacts with the atoms of the shielding material, causing ionization and thereby losing its energy completely or partially.

While dose limitation is the most effective way to minimize the effects and damage caused by X-rays and γ -rays, new materials are being developed for radiation shielding in situations where this is not possible. In the literature, there are many materials in which radiation shielding properties are investigated such as concrete, stell, metal, etc [1-5]. In this study, glass substrates were coated with CuO at concentrations of 10%, 20%, 30%, 40%, and 50% using the spin coater method.

2. Material and Methods

The homogeneous mixture of CuO and PMMA prepared in the specified percentages, has been coated onto glass substrates using the spin coating method by spinning at a speed of 2500 r/min. The resulting glass substrates have been left to dry at room temperature.

Subsequently, radiation absorption determination of glass materials was performed experimentally using a gamma spectrometer consisting of a NaI(Tl) detector and a multichannel analyzer (Fig. 1)

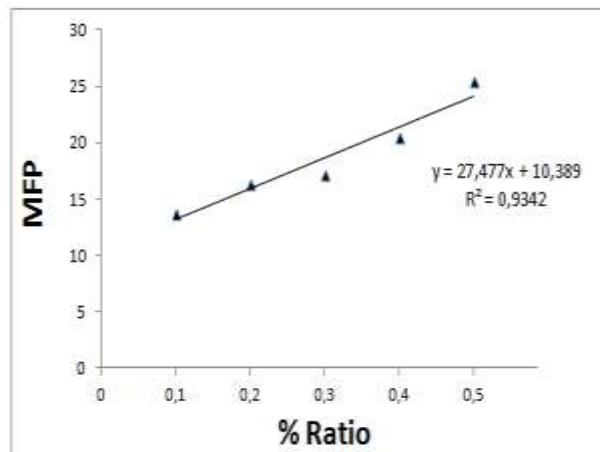

Figure 1. The gamma-ray spectroscopy system's design

The linear attenuation coefficient (μ) is calculated from the Beer-Lambert equation.

$$\mu = \frac{1}{x} \ln\left(\frac{N_0}{N}\right)$$

where x is the thickness of the glass sample, N_0 and N are the net counts before and after attenuation, and μ is the linear attenuation coefficient.

The linear attenuation coefficient-energy graph measured for CuO thin films coated at different ratios is given in Fig. 2.


Figure 2. Measured linear attenuation coefficient-energy change for different ratios CuO thin films

When this figure is examined, it can be seen that in glass materials coated with different ratios of PMMA and CuO, increasing the amount of CuO in the PMMA decreases the absorption coefficient. The average free path (mfp), half value layer (HVL), and tenth value layer (TVL) are crucial theoretical characteristics that are examined for gamma ray protection [6-16].

The parameter that allows us to determine the average distance traveled by incident radiation between two interactions within a material is the mean free path (mfp). It is calculated using the following formula:

$$mfp = \frac{1}{\mu}$$

The mfp- %ratio graph measured for CuO thin films coated at different ratios is given in Fig. 3.

Figure 3. Measured mfp-%ratio change for different ratios CuO thin films

When this figure examined, the linear correlation between the % ratio of CuO samples and mfp has been seen for all samples, and R^2 was found to be over 0.90.

Half value thickness (HVL) refers to the thickness of the shielding material required for the intensity (N_0) of the incident photon to be halved before it interacts with the material ($N = N_0/2$), and the tenth value thickness (TVL) is the thickness of the shielding material that will reduce the gamma radiation to a tenth of its intensity ($N = N_0/10$). It is calculated using the following formula:

$$HVL = \frac{\ln 2}{\mu} \quad TVL = \frac{\ln 10}{\mu}$$

The gamma ray transmission factor of the different ratios CuO samples as a function of material's thickness have been displayed in Fig. 4. It can be seen from this figure that the thickness of 0.5 CuO coated glass material should be kept higher than 0.1 CuO coated glass materials in order to stop gamma rays with the same energy.

Author Statements:

- **Ethical approval:** The conducted research is not related to either human or animal use.
- **Conflict of interest:** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
- **Acknowledgement:** The authors declare that they have nobody or no-company to acknowledge.
- **Author contributions:** The authors declare that they have equal right on this paper.
- **Funding information:** The authors declare that there is no funding to be acknowledged.
- **Data availability statement:** The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

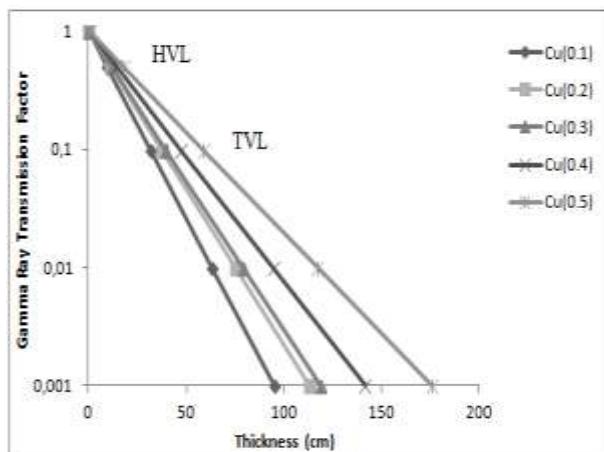


Figure 4. Measured gamma ray transmission factor-thickness change for different ratios CuO thin films

References

- [1] Mahesh, M., (2009). *MDCT physics: the basics: technology, image quality and radiation dose*. Lippincott Williams & Wilkins.
- [2] Ersundu, A. E., Büyükyıldız, M., Ersundu, M. Ç., Şakar, E., & Kurudirek, M. J. P. N. E. (2018). The heavy metal oxide glasses within the WO₃-MoO₃-TeO₂ system to investigate the shielding properties of radiation applications. *Progress in Nuclear Energy*, 104, 280-287.
- [3] United Nations Scientific Committee on the Effects of Atomic Radiation. (2010). Sources and Effects of Ionizing Radiation, *United Nations Publications*, 1(223), 404.
- [4] Morad Kh. Hamad. (2025). Synergistic Evaluation of Ionizing Radiation Shielding in Novel Lead-Free Alloys Using Geant4 MC toolkit. *International Journal of Applied Sciences and Radiation Research*, 2(1). <https://doi.org/10.22399/ijasrar.47>
- [5] Soyal, H., & Canpolat, M. (2025). Intersections of Ergonomics and Radiation Safety in Interventional Radiology. *International Journal of Sustainable Science and Technology*, 3(1). <https://doi.org/10.22399/ijssat.12>
- [6] Emikönel, S., & Akkurt, İskender. (2025). Radiation Shielding Properties of B₂O₃-Bi₂O₃ Glass. *International Journal of Computational and Experimental Science and Engineering*, 11(2). <https://doi.org/10.22399/ijcesen.2157>
- [7] Günoğlu, K., & Akkurt, İskender. (2023). Gamma-ray attenuation properties carbide compounds (WC, Mo₂C, TiC, SiC, B₄C) using Phy-X/PSD software. *International Journal of Applied Sciences and Radiation Research*, 1(1), 1–8. <https://doi.org/10.22399/ijasrar.6>
- [8] Demet Sarıyer. (2025). FLUKA Monte Carlo Assessment of Fe₂B-Based Shielding Materials for Secondary Neutrons in a 1000 MeV Proton Accelerator. *International Journal of Computational and Experimental Science and Engineering*, 11(4). <https://doi.org/10.22399/ijcesen.4544>
- [9] Waheed, F., Mohamed Abdulhusein Mohsin Al-Sudani, & İskender Akkurt. (2025). The Experimental Enhancing of the Radiation Shield Properties of Some Produced Compounds. *International Journal of Applied Sciences and Radiation Research*, 2(1). <https://doi.org/10.22399/ijasrar.1>
- [10] Soyal, H., & Sarıhan, M. (2025). The Place, Importance and Development Approaches of Radiation Safety and Protection Education in Associate Degree Health Programs. *International Journal of Sustainable Science and Technology*, 3(1). <https://doi.org/10.22399/ijssat.11>
- [11] Vural, M., Kabaca, A., Aksoy, S. H., Demir, M., Karaçam, S., Çavdar, Ulusoy, İdil, ... Günay, O. (2025). Determination Of Radiation Dose Levels to Which Partois And Spinal Cord (C1-C2) Regions Are Exposed In Computed Tomography Brain Imaging. *International Journal of Applied Sciences and Radiation Research*, 2(1). <https://doi.org/10.22399/ijasrar.17>
- [12] AYDIN, H., SÜSOY DOĞAN, G., TEKİN, H. O., ŞEN BAYKAL, D., & İLTUŞ, Y. C. (2025). Examining the Neutron and Gamma Attenuation Characteristics of Various Amorphous Structures with Bioactive Properties. *International Journal of Computational and Experimental Science and Engineering*, 11(3). <https://doi.org/10.22399/ijcesen.2176>
- [13] Sağlam, F., & Cetin, B. (2025). Investigation of Gamma Shielding Properties of Some Industrial Materials. *International Journal of Computational and Experimental Science and Engineering*, 11(2). <https://doi.org/10.22399/ijcesen.1357>

- [14]Özlen, M. S., Cuma, A. B., Yazıcı, S. D., Yeğin, N., Demir, Özge, Aksoy, H., ... Günay, O. (2024). Determination of Radiation Dose Level Exposed to Thyroid in C-Arm Scopy. *International Journal of Applied Sciences and Radiation Research*, 1(1). <https://doi.org/10.22399/ijasrar.13>
- [15]Yanik, R., & Dirican, B. (2025). Comprehensive Evaluation of Treatment Plans in Stereotactic Body Radiation Therapy (SBRT) for Lung Cancer Patients. *International Journal of Computational and Experimental Science and Engineering*, 11(4). <https://doi.org/10.22399/ijcesen.1033>
- [16]Betul Cetin, & Betul Sezer. (2025). Comparison of the radiation shielding effect of travertine and gasconcrete. *International Journal of Natural-Applied Sciences and Engineering*, 3(1). <https://doi.org/10.22399/ijnasen.31>