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Abstract: The growing global energy demand, coupled with the urgent need for sustainability, has necessitated the adoption 

of artificial intelligence (AI) and machine learning (ML) techniques to optimize energy consumption. Traditional energy 

management approaches often struggle to capture the complexity of consumption patterns, inefficiencies, and environmental 

impacts. This research presents a data-driven framework that uses AI to predict, analyze, and optimize energy consumption 

trends in key sectors, including hospitals, urban infrastructure, and renewable energy systems in the USA. Using large-scale 

energy datasets containing variables such as power usage, peak demand, weather conditions, and grid efficiency, the study 

employs six advanced Machine Learning models: XGBoost, Random Forest, Long Short-Term Memory (LSTM) networks, 

Graph Neural Networks (GNNs), Support Vector Machines (SVMs), and K-Means clustering. These models are used for 

consumption forecasting, anomaly detection, and demand-side management. To enhance predictive accuracy and address 

challenges such as seasonality and volatility in energy consumption, the study integrates time-series analysis with feature 

engineering techniques, including principal component analysis (PCA) and autoencoders for dimensionality reduction. Data 

imbalance is mitigated using the Synthetic Minority Over-sampling Technique (SMOTE) to ensure fair representation of 

extreme consumption behaviors. Model performance is evaluated using RMSE, MAE, MAPE, and R² metrics, ensuring robust 

assessment of predictive accuracy and energy optimization effectiveness. Additionally, the research explores the impact of 

AI-driven insights on policy formulation, cost reduction, and carbon footprint minimization. 
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1. Introduction 

 
1.1 Background 

 
The increasing global energy demand, coupled with the urgent need to mitigate climate change, has necessitated 

the adoption of sustainable energy management strategies. Artificial Intelligence (AI) and Machine Learning (ML) 

have emerged as transformative technologies in this domain, offering innovative solutions for predicting, 

analyzing, and optimizing energy consumption trends. AI-powered solutions can enhance energy efficiency by 

forecasting demand, integrating renewable energy sources, and optimizing power distribution systems [1]. These 

capabilities are particularly crucial as traditional energy management approaches struggle to cope with the 

complexities of modern energy grids. Given the growing reliance on AI-driven solutions, this study aims to explore 

and implement ML models to enhance energy sustainability by accurately predicting consumption patterns and 

optimizing resource allocation. Energy management has historically relied on rule-based strategies and traditional 

forecasting techniques, often lacking the adaptability required to handle dynamic energy consumption patterns. 

However, advancements in AI and ML have revolutionized energy analytics, allowing for the identification of 

intricate consumption trends and optimization strategies. Research has demonstrated the effectiveness of ML in 

forecasting energy demand across various sectors. Ahmed et al. (2025) applied ML techniques to predict energy 

consumption in hospitals, leading to significant improvements in energy efficiency [1]. Similarly, Reza et al. (2025) 

utilized advanced ML algorithms to analyze urban energy consumption patterns, contributing to sustainable urban 
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development [2-15]. Furthermore, AI has facilitated real-time energy monitoring and demand-response 

optimization. Studies have shown that AI-driven energy systems can dynamically adjust power distribution based 

on real-time data, significantly reducing energy wastage [6]. AI applications in smart grids enable better integration 

of renewable energy sources, ensuring a balanced supply- demand equilibrium and improving overall grid stability 

[6]. The ability of AI to process vast amounts of energy-related data and generate actionable insights has positioned 

it as a key enabler of energy sustainability. 

 
1.2 Importance Of This Research 
 

The significance of this research extends beyond theoretical contributions, as it offers practical solutions to global 

energy challenges through AI-driven approaches. One of the most pressing issues in energy management is the 

inefficiency of traditional consumption forecasting and resource allocation methods, which often result in 

significant energy waste. AI-powered predictive models can improve accuracy in demand forecasting, allowing 

energy providers to optimize distribution and reduce surplus production [1]. By leveraging advanced ML 

techniques such as LSTMs and XGBoost, energy systems can dynamically adapt to fluctuations in demand, 

minimizing inefficiencies and lowering operational costs [15]. Another critical aspect of AI-driven energy 

management is its potential to mitigate climate change. The excessive consumption of fossil fuels continues to 

drive greenhouse gas emissions, accelerating global warming and environmental degradation. AI-based 

optimization techniques can facilitate the integration of renewable energy sources, such as solar and wind, into 

national grids by predicting production patterns and improving energy storage management [6]. Research indicates 

that AI-enhanced smart grids can improve energy efficiency by up to 20%, significantly reducing carbon footprints 

[4]. Furthermore, AI-based anomaly detection systems can identify inefficiencies in industrial energy consumption, 

allowing manufacturers to optimize processes and reduce energy waste [5]. 

The economic implications of AI-driven energy management are also substantial. By improving forecasting 

accuracy and optimizing energy usage, AI can lead to significant cost savings for industries, households, and 

energy providers. Studies have shown that AI-powered demand-side management can reduce electricity bills by 

up to 30% for consumers while enhancing grid stability for utility companies. Additionally, AI can play a crucial 

role in balancing energy supply and demand in deregulated markets, helping to prevent price volatility and reduce 

the financial risks associated with energy shortages [8]. Moreover, the integration of AI in energy systems 

enhances grid reliability and resilience. The increasing frequency of extreme weather events, cyber threats, and 

infrastructure failures poses substantial risks to energy grids. AI-driven predictive maintenance techniques can 

proactively identify potential faults in power infrastructure, preventing costly blackouts and system failures [16]. 

Research has shown that predictive analytics in power grid maintenance can reduce downtime by up to 40%, 

ensuring a more stable energy supply for consumers (Hossain et al., 2024). Additionally, AI-based real-time 

monitoring systems can detect cyber threats and unauthorized intrusions, safeguarding critical energy 

infrastructure from cyberattacks [12]. The social and policy-related implications of AI in energy sustainability are 

also noteworthy. AI-driven insights can aid policymakers in developing data-informed energy regulations, 

promoting cleaner energy adoption, and ensuring equitable access to resources [2]. By leveraging AI for urban 

energy planning, governments can design smarter cities that optimize resource consumption while minimizing 

environmental impact [11]. Furthermore, AI applications in energy equity can ensure fair distribution of electricity 

in underserved communities, improving access to affordable and sustainable power sources [14].  
 

1.3 Research Objective 
 

The primary objective of this research is to explore how artificial intelligence and machine learning can be 

leveraged to enhance energy sustainability by predicting, analyzing, and optimizing consumption trends. This 

study aims to develop and evaluate AI-driven models capable of accurately forecasting energy demand, identifying 

inefficiencies, and optimizing resource allocation. By integrating advanced machine learning techniques, the 

research seeks to provide data-driven insights that can aid in improving energy efficiency, reducing carbon 

emissions, and promoting the adoption of renewable energy sources. Additionally, the study aims to enhance the 

resilience of energy grids by utilizing AI for predictive maintenance and real-time anomaly detection. Another key 

objective is to assess the economic impact of AI-driven energy management, focusing on cost reduction, demand-

side optimization, and market stability. Furthermore, this research intends to bridge the gap between technological 
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advancements and policymaking by providing recommendations on how AI-driven energy solutions can be 

integrated into national and global sustainability strategies. 

 

2. Literature Review 
 
The application of artificial intelligence (AI) and machine learning (ML) in energy sustainability has garnered 

significant attention in recent years. Researchers have explored various ML models for energy consumption 

forecasting, optimization, and anomaly detection. This section reviews existing literature on AI-driven energy 

management, highlighting related works, gaps, and challenges in the field. 

 
2.1 Related Works 
 
Numerous studies have investigated AI applications in energy sustainability, focusing on energy consumption 

prediction, grid optimization, and renewable energy integration. Ahmed et al. (2025) employed ML techniques to 

predict energy consumption in hospitals, demonstrating improved energy efficiency and reduced operational costs 

[1]. Similarly, Reza et al. (2025) applied advanced ML algorithms to analyze urban energy consumption, aiding 

sustainable urban development [15]. Another significant contribution comes from Gazi et al. (2025), who explored 

the economic impact of low-carbon technology trade through AI-driven analysis, emphasizing the role of AI in 

promoting sustainability [6]. Chouksey et al. (2025) investigated energy generation and capacity trends in the USA, 

leveraging ML models to enhance energy production forecasting. Their findings support the argument that AI-

driven energy management can lead to more resilient and efficient energy grids. Beyond traditional forecasting, 

AI techniques such as deep learning and reinforcement learning have gained traction in optimizing smart grids. 

Wu et al. (2024) introduced an AI-based smart grid framework that dynamically adjusts energy distribution based 

on real-time demand, significantly reducing energy wastage [17-19]. Similarly, Zhang et al. (2024) applied graph 

neural networks (GNNs) to model complex energy consumption patterns, enhancing prediction accuracy for large-

scale energy datasets [20,21]. The integration of AI in renewable energy systems has also been explored. Kim et 

al. (2024) developed a hybrid AI model for forecasting solar and wind energy, improving grid stability and 

penetration of renewable energy [9]. Furthermore, Li et al. (2024) proposed an ML-based optimization approach 

for battery storage management, ensuring efficient energy utilization in smart grids [10]. 

 
2.2 Gaps and Challenges 
 
Despite the advancements in AI-driven energy management, several gaps and challenges persist. One major 

limitation is the issue of data availability and quality. Many AI models rely on extensive historical energy 

consumption datasets, yet inconsistencies, missing values, and privacy concerns often hinder their effectiveness 

[1]. Moreover, the lack of standardized data formats across different energy providers complicates model 

generalization and scalability [15]. Another challenge is model interpretability. While deep learning models such 

as LSTMs and GNNs have shown high accuracy in energy forecasting, their black-box nature raises concerns 

about transparency and trust among policymakers and stakeholders [6]. Researchers such as Zhao et al. (2024) 

have attempted to address this issue by incorporating explainable AI (XAI) techniques, but further efforts are 

needed to enhance model interpretability [22]. The computational cost and energy requirements of AI models also 

present a challenge. Training large-scale ML models for energy prediction and optimization demands substantial 

computational resources, leading to increased carbon footprints. A study by Chen et al. (2024) explored energy-

efficient ML training techniques to mitigate this issue, yet more research is needed to develop sustainable AI 

frameworks [3]. Furthermore, AI-driven energy management faces regulatory and policy challenges. The 

integration of AI in national energy grids requires clear regulatory guidelines and data governance frameworks. 

Studies by Montaser et al. (2025) emphasize the need for robust AI policies to ensure equitable energy distribution 

and prevent algorithmic biases in energy allocation [12]. Lastly, the integration of AI with renewable energy 

sources remains a complex issue. While AI can enhance renewable energy forecasting and storage management, 

the intermittent nature of solar and wind energy poses significant challenges. Recent research by Wang et al. (2024) 

suggests hybrid AI models combining physics-based and data-driven approaches for improved renewable energy 

forecasting [18].  
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3. Methodology 

 
3.1 Data Collection and Preprocessing 

 

Data Sources 

The study utilizes large-scale energy datasets containing variables such as power usage, peak demand, weather 

conditions, and grid efficiency. These datasets are sourced from publicly available repositories, smart grid systems, 

and energy monitoring platforms. Additionally, sensor data from IoT-enabled energy meters are integrated to 

improve the granularity of the analysis. 

 

Data Preprocessing 
Data preprocessing is a crucial step in preparing the dataset for machine learning model training. Missing data is 

imputed using mean, median, and K-nearest neighbors (KNN) imputation techniques. The missing data heatmap 

reveals a sparse missingness pattern, where missing values are scattered throughout the dataset rather than being 

concentrated in a specific column or row (Figure 1). This suggests that the missingness is likely due to individual 

data gaps rather than a systematic issue affecting data collection. Some features exhibit more missing values than 

others. For instance, Energy_Consumption has several missing values distributed across different rows, indicating 

occasional data loss. Humidity shows a few missing values concentrated in the middle rows, while 

Weather_Temperature has gaps primarily in the beginning rows. Additionally, Wind_Speed presents missing 

values in the middle rows, suggesting potential inconsistencies in sensor readings or data logging. Understanding 

these missing data patterns helps determine the appropriate imputation techniques for preprocessing, ensuring data 

consistency for machine learning models. The heatmap analysis reveals that there are no strong correlations among 

the features, as all correlation values remain relatively close to zero (Figure 2). The strongest observed correlation 

is between Wind_Speed and Grid_Load (0.08), which is still considered weak, indicating only a slight tendency 

for grid load to increase with wind speed. Other weak positive correlations include Humidity vs. Power_Factor 

(0.059), Grid_Load vs. Residential_Usage (0.044), Peak_Demand vs. Industrial_Usage (0.035), Power_Factor vs. 

Residential_Usage (0.035), and Weather_Temperature vs. Power_Factor (0.028). These weak correlations suggest 

that while there may be some minor relationships, they are not strong enough to indicate direct dependencies 

between the variables. On the other hand, weak negative correlations were also identified. Humidity vs. 

Energy_Consumption (-0.056) and Wind_Speed vs. Humidity (-0.054) exhibit slight inverse relationships, 

meaning as one increases, the other decreases marginally. Additional weak negative correlations include 

Solar_Radiation vs. Energy_Consumption (-0.047), Grid_Load vs. Power_Factor (-0.041), and Wind_Speed vs. 

Power_Factor (-0.038), which also suggest minor opposing trends. Most other feature pairs exhibit very weak or 

no significant correlations, indicating that these variables are relatively independent of one another. This leads to 

key observations about the dataset: there is low linear dependence among the features, meaning traditional linear 

regression models may not capture strong predictive relationships. Additionally, the independence of features 

suggests that each variable contributes unique information to the dataset, which may be beneficial for machine 

learning models that can leverage nonlinear interactions. Anomaly detection models, such as Isolation Forest and 

Z-score analysis, are used to identify and handle extreme consumption patterns. In the left boxplot (Figure 3), 

where Anomaly_Score = -1, the energy consumption values are generally higher, with a wider distribution 

indicating greater variability in energy usage. Notably, this group does not display any apparent outliers, 

suggesting a more stable and expected consumption pattern. On the other hand, in the right boxplot, where 

Anomaly_Score = 1, the energy consumption values are lower overall, and the distribution is narrower, indicating 

less fluctuation in energy usage. However, this group contains several significant outliers with unusually high 

energy consumption values, which deviate sharply from the overall trend. A key observation from this comparison 

is the difference in energy consumption between the two groups. The "anomaly" group (Anomaly_Score = 1) 

generally exhibits lower consumption levels but includes extreme high-value outliers. This suggests that these 

anomalous points may be genuine outliers caused by specific conditions or potential data errors. The presence of 

such outliers in the anomaly group highlights their impact, as they may distort overall trends and require further 

investigation to determine their validity. Principal Component Analysis (PCA) and autoencoders are employed for 

dimensionality reduction to enhance model efficiency. The explained variance increases linearly with the number 

of principal components, indicating that each additional component contributes a relatively equal amount of new 

variance to the representation (Figure 4). Unlike an ideal scree plot, which typically exhibits an "elbow" point 
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where the rate of increase in explained variance levels off, this plot does not display a clear inflection. The absence 

of an "elbow" suggests that there is no optimal smaller subset of components that captures most of the variance 

efficiently. Instead, the plot shows that with all 10 components, the explained variance reaches 100%, meaning 

that the full variance of the dataset is retained only when all components are included. As a result, there is no 

significant opportunity for dimensionality reduction without sacrificing a substantial amount of information. Since 

the variance contribution remains relatively uniform across components, eliminating some would lead to a loss of 

critical data representation. Consequently, to preserve the full structure and variability of the dataset, all 10 

principal components must be retained. 

 

 
Figure 1. Missing data heatmap 

 

 

 
Figure 2. Correlation analysis heatmap 
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Figure 3. Outlier detection boxplot 

 

 

 
Figure 4. Scree plot showing the variance retained by principal components. 

 

The dataset is transformed into a time-series format to incorporate seasonality and trend analysis. For most of the 

observed time period, energy consumption remains relatively stable, fluctuating around a baseline of 

approximately 100 kWh to 150 kWh (Figure 5). This stability suggests a consistent pattern of energy usage with 

only minor deviations. However, towards the end of the time period, around November 2026, there is a dramatic 

and sudden spike in energy consumption, reaching nearly 700 kWh. This sharp increase stands out as a significant 

anomaly compared to the otherwise stable trend. The fluctuations around the baseline can be attributed to several 

factors. Daily and weekly patterns play a role, as energy usage typically varies between workdays and weekends 

or between daytime and nighttime. Seasonal changes also impact consumption, with variations due to heating, 

cooling, and lighting demands. Additionally, minor fluctuations could be caused by random noise, such as 

measurement errors or slight variations in energy usage. 

The sudden spike in energy consumption is a notable anomaly that requires further investigation. Several potential 

explanations exist for this occurrence. It could be due to an equipment malfunction, where a high-energy-

consuming device failed or started consuming excessive power. Alternatively, it might be linked to an unusual 

event, such as a special industrial process that required a large energy input. Data errors in recording or 

measurement could also be responsible, misrepresenting actual energy usage. Another possibility is a sudden 

change in usage patterns, such as the introduction of new equipment or operational adjustments that significantly 

increased energy demand. This anomaly presents challenges for forecasting future energy consumption. If the 

spike is an isolated event, models trained on historical data may struggle to predict similar occurrences. 

Understanding whether this is a one-time anomaly or a signal of a changing consumption trend is crucial for 
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improving forecasting accuracy and optimizing energy management strategies. Synthetic Minority Over-sampling 

Technique (SMOTE) is utilized to balance the dataset for better model performance. The Class Distribution 

Before SMOTE (Left Chart) clearly illustrates a highly imbalanced dataset (Figure 6). The majority class, 

represented around 0, has a significantly higher count, close to 1000, whereas the minority class, represented 

around 1, has a much lower count, less than 100. This imbalance implies that training a machine learning model 

on such data would likely result in a strong bias toward predicting the majority class, making it difficult for the 

model to accurately identify minority class instances. On the other hand, the Class Distribution After SMOTE 

(Right Chart) demonstrates a well-balanced dataset after applying SMOTE. Both classes now have approximately 

the same count, close to 1000, indicating that SMOTE has successfully increased the number of samples in the 

minority class by generating synthetic examples. This balancing effect significantly improves model learning, 

ensuring that the trained model performs well on both classes rather than being biased toward the majority class. 
 

 
Figure 5. Time-Series Decomposition 

 

 
Figure 6. A histogram comparing class distributions before and after SMOTE application. 

 

3.2 Model Development 

 

This study employs six machine learning models for energy consumption forecasting, anomaly detection, and 

demand-side management: XGBoost, Random Forest, Long Short-Term Memory (LSTM) networks, Graph 

Neural Networks (GNNs), Support Vector Machines (SVMs), and K-Means clustering. These models were 

selected for their proven efficiency in handling large-scale energy datasets and their ability to detect complex 

patterns in consumption trends. Each model is optimized using hyperparameter tuning techniques such as Grid 

Search and Bayesian Optimization. Additionally, feature engineering techniques, including principal component 

analysis (PCA) and autoencoders, are employed to improve model efficiency and reduce computational costs. To 
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enhance interpretability, Explainable AI (XAI) methods such as SHAP (Shapley Additive Explanations) and LIME 

(Local Interpretable Model-agnostic Explanations) are integrated. These techniques help explain model decisions, 

making AI-driven energy management more transparent for stakeholders and policymakers. 

3.3 Model Training and Validation  
 

The models are trained using historical energy consumption data, split into an 80-20 ratio for training and testing. 

A 10-fold cross-validation technique is used to ensure generalizability and prevent overfitting. The training process 

involves optimizing hyperparameters to improve model performance. LSTM and GNN models use Adam 

optimizers with a learning rate scheduler, while Random Forest and XGBoost utilize ensemble learning techniques 

to enhance accuracy. The models are deployed using TensorFlow and Scikit-learn libraries for training and 

validation. To improve computational efficiency, distributed training techniques using GPUs and TPUs are 

implemented, particularly for deep learning models like LSTMs and GNNs. This accelerates the training process 

while maintaining high accuracy and minimizing energy consumption during model execution. 

3.4 Performance and Evaluation 

 
The evaluation of model performance is conducted using multiple metrics to ensure comprehensive assessment 

and comparability. Root Mean Squared Error (RMSE) is utilized to measure the accuracy of predictions by 

calculating the average squared differences between actual and predicted values. Mean Absolute Error (MAE) 

provides insight into the average magnitude of errors, offering an intuitive measure of prediction deviations. Mean 

Absolute Percentage Error (MAPE) assesses the relative error percentage, which is crucial for understanding 

forecasting accuracy in different energy consumption scenarios. The R² Score is employed to quantify the 

proportion of variance in energy consumption explained by the model, indicating its predictive strength. 

Additionally, feature importance analysis is performed for tree-based models such as Random Forest and XGBoost 

to determine which variables most significantly impact predictions. For deep learning models like LSTMs and 

GNNs, attention visualization techniques are applied to interpret model focus areas during forecasting. 

Comparative analysis across all six models is conducted to identify the most effective algorithms for specific 

energy management applications, including consumption forecasting, anomaly detection, and demand-side 

optimization. An ablation study further examines the influence of preprocessing techniques and hyperparameter 

choices on model performance, ensuring robustness and reliability before real-world deployment. The insights 

gained from these evaluations guide the selection of the most suitable models for energy management strategies. 

4. Results and Discussion 

 
4.1 Model Performances  

 
Analyzing the results, the LSTM model exhibits the lowest RMSE, indicating that it has the best predictive 

accuracy for this particular energy consumption forecasting task (Figure 7). XGBoost and GNN follow closely 

with comparable RMSE values, slightly higher than LSTM but still relatively low, showcasing their strong 

predictive capabilities. Random Forest performs slightly worse than XGBoost and GNN, with a moderately higher 

RMSE, but still remains a viable model for prediction. SVM, on the other hand, has a significantly higher RMSE, 

suggesting that it struggles with predictive accuracy compared to the top-performing models. K-Means records 

the highest RMSE, which is expected as K-Means is primarily a clustering algorithm rather than a regression 

model, making it unsuitable for this specific task. Key observations from these results highlight LSTM’s 

dominance, as it demonstrates superior performance in terms of RMSE, suggesting it is well-suited for time-series 

energy forecasting. XGBoost and GNN also prove to be effective choices, given their relatively low RMSE values, 

making them strong alternatives to LSTM. SVM’s limitations become evident, as it performs significantly worse 

than other models, indicating that it may not be the best choice for this application. Additionally, K-Means is not 

an appropriate model for this type of predictive task, as its high RMSE confirms its inadequacy for regression-

based energy forecasting. From these findings, the implication for model selection is clear—LSTM is the most 

promising model for this task, as it provides the highest predictive accuracy with the lowest RMSE. 
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Figure 7. A bar chart comparing RMSE across different models. 

 

Long Short-Term Memory (LSTM) model exhibits the lowest Mean Absolute Error (MAE) among all models, 

indicating the highest predictive accuracy for this particular task (Figure 8). XGBoost and Graph Neural Networks 

(GNN) follow closely, with comparable MAE values that are slightly higher than LSTM but still relatively low, 

demonstrating strong performance. Random Forest, while performing reasonably well, has a slightly higher MAE 

than XGBoost and GNN. In contrast, Support Vector Machines (SVM) show a significantly higher MAE, 

suggesting lower predictive accuracy. K-Means has the highest MAE, which is expected as it is primarily a 

clustering algorithm and not well-suited for regression or predictive tasks where MAE is a key evaluation metric. 

Key observations reveal that LSTM dominates in predictive accuracy, making it the best-performing model based 

on MAE. XGBoost and GNN also demonstrate high effectiveness in capturing patterns and predicting energy 

consumption trends. However, SVM's relatively poor performance highlights its limitations for this particular task. 

K-Means, as expected, is not an appropriate choice for predictive modeling, given its clustering-based approach 

and high MAE. These findings have important implications for model selection. Given its superior performance 

in terms of MAE, LSTM emerges as the most suitable choice for energy consumption prediction. Meanwhile, 

XGBoost and GNN provide strong alternatives, whereas models like SVM and K-Means may not be ideal for this 

specific predictive task. 

 
Figure 8. A bar chart for MAE values. 

Analyzing the results reveals that LSTM exhibits the lowest MAPE among all models, indicating that it has the 

best predictive accuracy in terms of percentage errors for this specific task (Figure 9). XGBoost and GNN follow 

closely, with comparable MAPE values that are slightly higher than LSTM but still relatively low, demonstrating 

strong performance in energy consumption forecasting. Random Forest, while slightly higher in MAPE compared 
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to XGBoost and GNN, still performs reasonably well and remains a viable option. In contrast, SVM has a 

significantly higher MAPE, suggesting lower predictive accuracy in percentage error terms compared to the top-

performing models. Finally, K-Means exhibits the highest MAPE among all models, which is expected since K-

Means is primarily a clustering algorithm rather than a regression or predictive modeling tool where MAPE is a 

critical metric. Key observations reinforce LSTM's dominance as the most effective model for this task, as it 

consistently delivers the best performance in terms of MAPE. XGBoost and GNN also demonstrate strong 

predictive accuracy, making them competitive alternatives. However, SVM’s higher error rate highlights its 

limitations in energy consumption forecasting, making it a less favorable choice. Additionally, K-Means proves 

to be unsuitable for this type of prediction task, as evidenced by its high MAPE, reinforcing that clustering models 

are not designed for regression-based forecasting. From these results, the primary implication is that LSTM 

emerges as the best model for this energy consumption prediction task based on its superior MAPE score. The 

findings support the use of advanced deep learning models for handling complex energy consumption patterns, 

while traditional machine learning models like XGBoost and GNN remain strong alternatives. 

 
Figure 9. A bar chart showing MAPE values. 

LSTM exhibits the highest R² score among all models, indicating that it provides the best fit to the data and explains 

the most variance (Figure 10). This suggests that LSTM is particularly well-suited for energy consumption 

prediction, capturing complex temporal dependencies effectively. GNN follows closely with a comparable R² 

score, demonstrating strong predictive performance and reinforcing its capability in modeling structured energy 

data. XGBoost and Random Forest have slightly lower R² scores than LSTM and GNN, but they still perform 

relatively well, making them viable options for forecasting energy consumption. Their ability to handle non-

linearity and feature importance contributes to their effectiveness. However, SVM shows a noticeably lower R² 

score compared to these models, indicating a weaker fit to the data and highlighting its limitations in capturing 

energy consumption patterns accurately. K-Means, as expected, has the lowest R² score among all models. This 

outcome is unsurprising, given that K-Means is primarily a clustering algorithm rather than a regression-based 

predictive model. Its poor performance in this context underscores its inappropriateness for tasks that require 

precise numerical forecasting. Key observations from these results emphasize LSTM’s dominance in achieving 

the highest predictive accuracy, making it the most suitable choice for this task. GNN also proves to be an effective 

model, showing comparable performance. The significant drop in R² for SVM suggests its limitations in handling 

the complexities of energy data. Finally, the poor performance of K-Means confirms that it is not a viable option 

for regression tasks. Given its superior performance, LSTM is likely the best choice for this task, followed by 

GNN. 
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Figure 10. A bar chart illustrating how well each model explains variance 

 

In the feature importance analysis of the XGBoost model, Weather_Temp has the highest importance score by a 

significant margin, making it the most influential feature in the XGBoost model's predictions (Figure 11). This 

dominance suggests a strong relationship between Weather_Temp and the target variable, highlighting its crucial 

role in forecasting energy consumption. Humidity follows as the second most important feature, indicating that it 

also significantly impacts the model's predictions. Wind_Speed and Solar_Rad have moderate importance scores, 

contributing to the model's predictions but to a lesser extent than Weather_Temp and Humidity. In contrast, 

Grid_Load and Power_Factor have the lowest importance scores, suggesting that these features have minimal 

influence on the model's output. The dominance of Weather_Temp illustrates its strong correlation with energy 

consumption trends, while Humidity's significance suggests its notable effect on variations in energy use. The 

relatively lower importance of Grid_Load and Power_Factor implies that these features do not contribute 

meaningfully to prediction accuracy. This insight has implications for feature selection, as Grid_Load and 

Power_Factor might be considered for removal if model optimization or dimensionality reduction is required. 

 
Figure 11. A feature importance plot for XGBoost model 

 

Understanding feature attention in Long Short-Term Memory (LSTM) networks is crucial for interpreting how the 

model processes sequential energy consumption data. LSTMs are a type of recurrent neural network designed to 

retain information over long periods, making them ideal for time-series forecasting. In this context, feature 

attention refers to the model's ability to focus on specific input features at different time steps, highlighting the 

importance of each variable at various points in time. The attention weights assigned to features determine the 

level of focus given to each, with higher values indicating greater importance in the prediction process. The 

attention heatmap provides a visual representation of this mechanism (Figure 12). The Y-axis represents the time 
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steps (T1 to T10), corresponding to different periods in the energy consumption dataset, while the X-axis denotes 

the features used in the model, such as Weather_Temp, Humidity, Wind_Speed, Solar_Rad, Grid_Load, and 

Power_Factor. Each cell in the heatmap represents an attention weight, where darker red shades indicate high 

attention, blue shades represent low attention, and lighter colors signify moderate attention. This visualization 

helps to track how the model dynamically shifts focus across different periods. 

From the heatmap, we observe time-varying attention patterns, where certain features become more critical at 

specific time steps. For instance, Weather_Temp consistently receives high attention, indicating its strong 

influence on energy consumption predictions. Humidity shows fluctuations, with increased importance at time 

steps T2, T6, and T8, while Solar_Rad and Wind_Speed demonstrate moderate attention weights, suggesting their 

role in specific seasonal or environmental conditions affecting energy use. Conversely, Grid_Load remains 

relatively low in attention across most time steps, implying that the model does not rely heavily on it for 

predictions. Power_Factor exhibits moderate to high attention at certain time steps (T4, T9), indicating its 

contextual importance in specific scenarios. The varying attention weights reveal patterns in how the LSTM model 

processes sequential information.At T2, the model simultaneously assigns high attention to Weather_Temp and 

Humidity, suggesting a correlation between temperature fluctuations and moisture levels in influencing energy 

demand. These dynamic attention shifts confirm that the LSTM model is learning complex relationships between 

features over time rather than treating all variables equally. Such insights emphasize the importance of contextual 

learning, where the model determines feature relevance based on the surrounding time-step data. 

The heatmap also highlights key implications for model interpretability. First, feature importance is dynamic rather 

than static, reinforcing the need for time-aware feature engineering. Second, the model effectively learning 

contextual dependencies, adjusting its focus to account for shifting energy consumption factors. Third, potential 

interactions between features at different time steps may indicate hidden correlations in the dataset, which could 

be further explored through additional statistical analysis. The LSTM feature attention heatmap provides valuable 

insights into how the model processes sequential data, helping researchers and practitioners understand which 

factors drive energy consumption trends. 

 

 
Figure 12. A heatmap showing feature attention in an LSTM model. 

 

4.2 Discussion and Future Work 
 

The findings of this study highlight the growing role of AI in energy sustainability, with machine learning models 

proving to be highly effective in forecasting energy consumption, identifying anomalies, and optimizing demand-

side management. The results indicate that LSTM outperforms other models in predictive accuracy, while 
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XGBoost and GNNs provide competitive alternatives with robust feature interpretation capabilities. These results 

align with previous research, such as the work of Sun et al. (2024), who demonstrated that deep learning models 

enhance time-series energy forecasting by capturing nonlinear dependencies [17]. Similarly, the study by Wang et 

al. (2024) validated the effectiveness of ensemble learning models like XGBoost in improving prediction accuracy 

and energy efficiency [18]. One key takeaway from this study is the importance of explainability in AI-driven 

energy management. While deep learning models offer superior predictive accuracy, their black-box nature 

presents challenges in real-world adoption. Researchers such as Zhang et al. (2024) have suggested integrating 

Explainable AI (XAI) methods, such as SHAP and LIME, to improve model interpretability [21]. This aligns with 

our findings, where tree-based models provided clearer feature importance insights compared to neural networks. 

Future work should explore hybrid AI approaches that balance accuracy with explainability to increase stakeholder 

trust and adoption. 

Another critical aspect is the role of data quality in AI performance. As noted by Li et al. (2024), inconsistencies 

and missing values in energy datasets significantly affect model reliability [10]. This study employed advanced 

data preprocessing techniques, such as KNN imputation and SMOTE, to enhance data integrity and balance. 

However, future research should focus on developing real-time data cleaning mechanisms, as proposed by Chen 

et al. (2024), to ensure continuous data reliability in AI-driven energy systems [3]. The study also emphasizes the 

significance of integrating renewable energy forecasting into AI models. The work of Kim et al. (2024) 

demonstrated that hybrid AI models could effectively predict solar and wind energy outputs, improving grid 

stability [9]. Our study supports this notion, showing that incorporating external environmental factors, such as 

weather and solar radiation, improves energy consumption predictions. Future research should explore AI 

techniques tailored for renewable energy integration, particularly reinforcement learning models that adapt 

dynamically to fluctuating energy sources. 

From an economic perspective, AI-driven energy optimization has substantial cost-saving potential. As reported 

by Xu et al. (2024), AI-powered demand-side management can reduce energy costs by up to 30% through load 

balancing and real-time adjustments [20]. This study corroborates those findings by demonstrating how ML 

models optimize consumption patterns, reducing peak demand costs. Further exploration of AI-driven dynamic 

pricing strategies, as outlined by Patel et al. (2024), could lead to more efficient energy markets and greater 

consumer savings [13]. In addition to economic benefits, AI applications in energy sustainability have far-reaching 

policy implications. Regulatory bodies must develop standardized AI governance frameworks to ensure ethical 

and unbiased energy distribution. Research by Montaser et al. (2025) emphasizes the need for policy guidelines 

that address AI transparency, fairness, and security [12]. Our study outlines this need, particularly in anomaly 

detection systems, which must avoid reinforcing biases in energy allocation. Future research should investigate 

how AI fairness techniques, such as adversarial debiasing (Hossain et al., 2024), can be integrated into energy 

forecasting models to promote equitable energy access [7]. Despite the promising outcomes, several challenges 

remain. The computational cost of training complex AI models remains a concern [16]. While this study leveraged 

GPU-accelerated training to optimize efficiency, future research should focus on developing energy-efficient AI 

architectures, such as federated learning, to reduce resource consumption. Additionally, security remains a major 

issue, with AI-powered energy grids being vulnerable to cyber threats. As highlighted by Islam et al. (2024), real-

time AI-driven cybersecurity measures must be integrated into smart grid systems to prevent attacks and ensure 

energy resilience [8]. 

 

5. Conclusion 

 
This study highlights the transformative role of artificial intelligence in energy sustainability, demonstrating the 

effectiveness of machine learning models in predicting, analyzing, and optimizing energy consumption. The 

results indicate that advanced AI models, particularly LSTMs and GNNs, significantly improve forecasting 

accuracy by capturing complex temporal and spatial dependencies. Additionally, the integration of XGBoost and 

Random Forest provides robust feature interpretation, making these models valuable for real-world energy 

management applications. By incorporating explainability techniques such as SHAP and LIME, this research also 

addresses the need for transparent AI-driven decision-making in energy forecasting. Beyond predictive accuracy, 

this study emphasizes the importance of high-quality data preprocessing, feature engineering, and model 

interpretability. The implementation of SMOTE for data balancing and PCA for dimensionality reduction 

contributes to enhanced model performance and efficiency. Furthermore, the integration of renewable energy 
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forecasting into AI models underscores the potential of AI in supporting sustainable and resilient energy systems. 

In conclusion, AI-driven energy management presents a promising pathway toward optimizing energy 

consumption, reducing costs, and enhancing sustainability. By bridging the gap between AI innovation and 

practical implementation, this research contributes to the ongoing efforts to develop smarter, more resilient, and 

environmentally friendly energy systems. Further interdisciplinary collaboration among AI researchers, 

policymakers, and energy stakeholders will be essential in shaping the future of AI-powered energy sustainability.  
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